957 resultados para Warfarin gel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional SrAl2O4:Eu2+, Dy3+ fibers were fabricated by a simple electrospinning combined with sol-gel process. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence were used to characterize the fibers. The results show that the phase structure of SrAl2O4:Eu2+, Dy3+ belongs to a monoclinic one, the composite fibers and fibers calcined at high temperature remain the original one-dimensional texture, and the SrAl2O4:Eu2+, Dy3+ was a green emission. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodisperse, core-shell-structured SiO2@NaGd(WO4)(2):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and low-voltage cathodoluminescence (CL) as well as time-resolved PL spectra and lifetimes. PL and CL study revealed that the core-shell-structured SiO2@NaGd (WO4)(2):Eu3+ particles show strong red emission dominated by the D-5(0) - F-7(2) transition of Eu3+ at 614 nm with a lifetime of 0.74 ms. The PL and CL emission intensity can be tuned by the coating number of NaGd(WO4)(2):Eu3+ phosphor layers on SiO2 and by accelerating voltage and the filament current, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gel effect in the reactive extrusion process for free radical polymerization in a closely intermeshing co-rotating twin screw extruder was investigated. First the reaction kinetic model was constructed mainly on the basis of entanglement theory. Next, numerical calculation expressions for the initiator and monomer concentrations, monomer conversion, average molecular weight and apparent viscosity were deduced. Finally, the evolution of the above variables were shown and discussed for the example of butyl methacrylate. The simulated results of the monomer conversion are in good agreement with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tb3+-doped LiYF4 films were deposited on quartz glass by a simple sol-gel method. X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 300 degrees C and fully crystallized at 400 degrees C. AFM and FESEM images of singly coated LiY0.95Tb0.05F4 annealed at 400 degrees C indicated that the film is uniform and crack-free films with average grain size of 90 nm, root mean square roughness of 11 nm and thickness of 120 nm. The doped Tb3+ ions showed its characteristic emission in crystalline LiYF4 films, i.e., D-5(3), F--7(4)J (J = 6, 5, 4, 3) emissions. The optimum doping concentration of the Tb3+ was determined to be 5.0 mol% of Y3+ in LiYF4 films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel polyampholyte superabsorbent nanocomposites with excellent gel strength were synthesized by in situ solution polymerization in aqueous solution. Acrylic acid and acryloyloxyethyl trimethyl ammonium chloride (DAC) were employed as ionic monomers and montmorillonite (MMT) was used as inorganic component. The addition of cationic component could supply the positive charge in the network of nanocomposite and promote the formation of nanostructure of composites due to the interaction between DAC and clay platelets. The performance of polyampholyte nanocomposites were investigated and the result showed that the gel strength of nanocomposite hydrogel in distilled water and 0.9 wt% NaCl solution could reach 198.85 and 204.23 mJ/g, respectively, which were 13 times of the gel strength of matrix. The investigation of swelling behaviors showed that the nanocomposites had particular swelling behaviors of polyampholytes hydrogel in solution with different pH values and concentration of NaCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), and poly(ethylene glycol) methyl ether methacrylate as a backbone and poly(ethylene glycol) methyl ether (PEGME) with 1100 molecular weight as side chains, comb-like gel polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the gel copolymer electrolytes possess two glass transitions: alpha-transition and beta-transition. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T. as reference temperature. By reference to T-0 = 50 degrees C, the relation between log c, and c was found to be linear. The master curves are displaced progressively to higher frequencies as the content of plasticizer is increased. The relation between log tau(p) and the content of plasticizer is also linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.