942 resultados para Wall Thickness
Resumo:
Metal cylindrical storage structures of significant size, such as silos and vertical-axis tanks, are almost always constructed from many short cylindrical shells of different thickness as the stress resultants on the wall progressively increase towards the base. The resulting increases in thickness are always made in step changes using metal sheets of uniform thickness because of the availability of such source materials. The result is a shell with a stepped wall with multiple discrete steps in thickness. Such shells are very susceptible to buckling under external pressure when empty or partially filled, but the buckling mode may involve only part of the shell height due to the changes in shell thickness. These changes must therefore be accounted for within the design process. A new method of determining the critical buckling resistance of such shells was recently developed, and although it has been shown to be valid, the methodology for its application in practical design has not been set out or shown. This paper therefore briefly describes the new method and demonstrates the manner in which it can be used to produce rapid, safe assessments of cylindrical shells with a wide range of patterns of wall thickness changes. The results are then suitable for direct introduction into such documents as the European standard on metal shells [1] and the ECCS Recommendations [2].
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronomia, 2016.
Resumo:
Background: Hirschsprung’s disease (HD) is a congenital intestinal motility disorder with absence of ganglion cells in the colonic wall. Diagnosis of the disease is mainly based on the identification of the lack of ganglion cells in the pathology sections of the colon which is very difficult and time consuming and also needs several serial cut sections. There are many proposed markers in this field in the literature but none of them has been satisfactory. Calretinin immunohistochemistry (IHC) has been introduced as a new diagnostic marker to overcome the problems in diagnosis of this disease about 5 years ago. However there are few studies regarding the benefits and pitfalls of this marker. Objectives: The aim of this study is to determine the diagnostic value of calretinin IHC in detecting aganglionosis (HD). Patients and Methods: 27 HD patients and 28 non-Hirschsprung’s disease (NHD) patients were collected in a prospective study and calretinin IHC was performed on 31 aganglionic and 51 normoganglionic full wall thickness sections of colectomies (some of the cases had more than 1 section). The IHC slides were evaluated by two pathologists and the diagnostic value was calculated in comparison with gold standard which is the presence or absence of ganglion cells in serial Hematoxylin and Eosin (HE) stained sections of the colectomies. Results: There was great concordance between the final diagnosis of both pathologists and gold standard (k > 0.9). Calretinin immunostaining showed 100% specificity and positive predictive value and more than 90% sensitivity and negative predictive value. High agreement was present between the two pathologists (k > 0.9). Conclusions: Calretinin IHC is a very convenient, useful and valuable method to demonstrate aganglionosis in HD patients. Loss of calretinin immunostaining in lamina propria and submucosa is characteristic of HD.
Resumo:
Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the creation of materials with a controllable nanoarchitecture that can have structural features spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication methods in conjunction with nanomaterial processing techniques permit a nearly unbounded design space through which new combinations of nanomaterials and architecture can be realized. In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders of magnitude from ρ=0.3-300kg/m3 and with features as small as 5nm. Uniaxial compression and cyclic loading tests performed on different nanolattice topologies revealed a range of novel mechanical properties: the constituent nanoceramics used here have size-enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely after compression to 50% strain when their wall thicknesses were reduced below 20nm due to the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a near linear scaling of strength and stiffness with relative density, with E∝ρ1.04 and σy∝ρ1.17 for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and showed a nearly uniform scaling of strength and stiffness with relative density, marking a significant deviation from traditional theories on “bending” and “stretching” dominated cellular solids; and the mechanical behavior across all topologies was highly tunable and was observed to strongly correlate with the slenderness λ and the wall thickness-to-radius ratio t/a of the beams. These results demonstrate the potential of nanoarchitected materials to create new highly tunable mechanical metamaterials with previously unattainable properties.
Resumo:
To determine whether the heart rate (HR) response to exercise in 21 highly trained cyclists (mean (SD) age 25 (3) years) was related to their heart dimensions. Methods—Before performing an incremental exercise test involving a ramp protocol with workload increases of 25 W/min, each subject underwent echocardiographic evaluation of the following variables: left ventricular end diastolic internal diameter (LVIDd), left ventricular posterior wall thickness at end diastole (LVPWTd), interventricular septal wall thickness at end diastole (IVSTd), left ventricular mass index (LVMI), left atrial dimension (LAD), longitudinal left atrial (LLAD) and right atrial (LRAD) dimensions, and the ratio of early to late (E/A) diastolic flow velocity. Results—The HR response showed a de- flection point (HRd) at about 85% V~ O2MAX in 66.7% of subjects (D group; n = 14) and was linear in 33.3% (NoD group; n = 7). Several echocardiographic variables (LVMI, LAD, LLAD, LRAD) indicative of heart dimensions were similar in each group. However, mean LPWTd (p<0.01) and IVSTd (p<0.05) values were signifi- cantly higher in the D group. Finally, no significant diVerence between groups was found with respect to the E/A. The HR response is curvilinear during incremental exercise in a considerable number of highly trained endurance athletes—that is, top level cyclists. The departure of HR increase from linearity may predominantly occur in athletes with thicker heart walls.
Resumo:
The cavotricuspid isthmus (CTI) in the lower pan of the right atrium, between the inferior caval vein and the tricuspid valve, is considered crucial in producing a conduction delay and. hence, favoring the perpetuation of a reentrant circuit. Non-uniform wall thickness, muscle fiber orientation and the marked variability in muscular architecture in the CTI should be taken into consideration from the perspective of anisotropic conduction, thus producing an electrophysiologic isthmus. The purpose of this article is to review the anatomy and electrophysiology of the CTI in human hearts to provide useful information to plan CTI radio frequency ablation for the patients with atrial flutter.
Resumo:
ABSTRACT Background Cardiac magnetic resonance (CMR) has been shown as promising diagnostic tool in Anderson-Fabry disease (AFD) cardiomyopathy due to its ability to detect fat deposits through lower native T1 values. However no histological validation has been provided to date. Objectives To correlate CMR and histologic findings in different cardiac stages of AFD focusing on T1 mapping. Methods Fifteen AFD patients (49 years [IQR 39-63], 60% females) undergoing CMR (cines, native T1 and T2 mapping, LGE and post-contrast T1 imaging) and endomyocardial biopsy (EMB, n=11) or septal myectomy (n=4), were retrospectively evaluated. Tissue specimens were analyzed with light/electron microscopy and vacuolization amount calculated as percentages of vacuolated myocytes and vacuolated myocyte area (%VMA) through a quantitative histomorphometric color-based analysis. Results In patients without increased indexed left ventricular mass (LVMi) at CMR (67%), T1 fell as %VMA increased (r= -0.883; p<0.001), whereas no clear relationship was evident once increased LVMi occurred (r= -0.501; p=0.389). At least 45% of vacuolized myocytes and 10% of VMA were needed for low T1 to occur. %VMA positively correlate with maximal wall thickness (MWT, r=0.860, p<0.0001) and LVMi (r= 0.762; p<0.001). Increased MWT and LVMi were present with at least 45% and 80% of vacuolated myocytes, respectively, and 18% and 22% of VMA. Conclusions This study demonstrated an inverse correlation between native T1 and the vacuolization amount in patients without increased LVMi at CMR, providing a histological validation of low native T1 in AFD. Importantly, a significant vacuolization burden was needed before low T1 and left ventricle hypertrophy occurred.
Resumo:
Rapport de synthèse : Les tumeurs de la paroi thoracique sont des pathologies graves dont le traitement principal consiste en une résection chirurgicale. L'enjeu majeur de cette intervention ontologique est de réséquer la totalité de la tumeur, ce qui nécessite une planification préopératoire minutieuse. Classiquement, l'identification et la localisation de la tumeur se fait à l'aide de la tomodensitométrie (computed tomography, CT) ou de l'imagerie par résonnance magnétique (1RM). Actuellement, l'imagerie nucléaire fonctionnelle par tomographie par émission de positons (positron emission tomography, PET) qui peut être couplée au CT (PET/CT) est de plus en plus appliquée aux patients présentant une tumeur maligne. Son efficacité a fréquemment été démontrée. Le but de la présente étude est d'évaluer la valeur du PET dans la planification de la résection des tumeurs de la paroi thoracique. Une analyse rétrospective de dix-huit patients opérés entre 2004 et 2006 a été réalisée; Dans ce groupe de patient, la taille de la tumeur mesurée sur la pièce opératoire réséquée a été comparée à la taille de la tumeur mesurée sur le CT et le PET. Les résultats démontrent que le CT surestimait de manière consistante la taille réelle de la tumeur par rapport au PET (+64% par rapport à +1%, P<0.001). De plus, le PET s'est avéré particulièrement performant pour prédire la taille des tumeurs de plus de 5.5 cm de diamètre par rapport au CT (valeur prédictive positive 80% par rapport à 44% et spécificité 93% par apport à 64%, respectivement). Cette étude démontre que le PET permettrait de mesurer la taille des tumeurs de la paroi thoracique de manière plus précise que le CT. Cette nouvelle modalité diagnostique s'avèrerait donc utile pour planifier les résections chirurgicales de telles tumeurs. A notre connaissance, aucune publication ne décrit la valeur du PET dans ce domaine. Les performances accrues du PET permettraient une meilleure délimitation des tumeurs ce qui améliorerait la précision de la résection chirurgicale. En conclusion, cette étude préliminaire rétrospective démontre la faisabilité du PET pour les tumeurs de la paroi thoracique. Ces résultats devraient être confirmés par une étude prospective incluant un plus grand nombre de patients avec la perspective de juger l'impact clinique réel du PET sur la prise en charge thérapeutique des patients.
Resumo:
BACKGROUND: Chest wall resection and reconstruction can be performed with minimal mortality and excellent functional and cosmetic results using synthetic meshes, methylmethacrylate, or other substitutes. However, these techniques are less easily applicable if chest wall resections have to be performed for infections. METHODS: We report a novel technique for this purpose using a modified latissimus dorsi flap harvested in continuity with the thoracolumbar fascia. The vascularized fascia was sutured into the chest wall defect, providing a stable base for the muscular component of the flap. Three patients requiring large full-thickness resections of the anterolateral chest wall for chronic infections were treated accordingly, two presenting with chronic radionecrosis and osteomyelitis and one with chest wall invasion by pulmonary aspergillosis. RESULTS: There were no intraoperative or postoperative complications and immediate extubation was possible in all 3 patients without the need for postoperative ventilation or tracheotomy. Healing of the infected chest wall was observed in all 3 patients. Postoperative cinemagnetic resonance imaging revealed concordant movements of the replaced segments without evidence of paradoxical motion during inspiration and expiration. CONCLUSIONS: This technique is easy and safe. It allows a stable and satisfactory reconstruction after large anterolateral full-thickness chest wall resections of infected, previously irradiated tissues, using only well-vascularized autologous tissue.
Resumo:
Preoperative imaging for resection of chest wall malignancies is generally performed by computed tomography (CT). We evaluated the role of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in planning full-thickness chest wall resections for malignancies. We retrospectively included 18 consecutive patients operated from 2004 to 2006 at our institution. Tumor extent was measured by CT and PET, using the two largest perpendicular tumor extensions in the chest wall plane to compute the tumor surface assuming an elliptical shape. Imaging measurements were compared to histopathology assessment of tumor borders. CT assessment consistently overestimated the tumor size as compared to PET (+64% vs. +1%, P<0.001). Moreover, PET was significantly better than CT at defining the size of lesions >24 cm(2) corresponding to a mean diameter >5.5 cm or an ellipse of >4 cm x 7.6 cm (positive predictive value 80% vs. 44% and specificity 93% vs. 64%, respectively). Metabolic PET imaging was superior to CT for defining the extent of chest wall tumors, particularly for tumors with a diameter >5.5 cm. PET can complement CT in planning full-thickness chest wall resection for malignancies, but its true value remains to be determined in larger, prospective studies.
Resumo:
Asthma is characterised by an increased airway smooth muscle (ASM) area (ASMarea) within the airway wall. The present study examined the relationship of factors including severity and duration of asthma to ASMarea. The perimeter of the basement membrane (PBM) and ASMarea were measured on transverse sections of large and small airways from post mortem cases of fatal (n=107) and nonfatal asthma (n=37) and from control subjects (n=69). The thickness of ASM (ASMarea/PBM) was compared between asthma groups using multivariate linear regression. When all airways were considered together, ASMarea/PBM (in millimetres) was increased in nonfatal (median 0.04; interquartile range 0.013-0.051; p=0.034) and fatal cases of asthma (0.048; 0.025-0.078; p<0.001) compared with controls (0.036; 0.024-0.042). Compared with cases of nonfatal asthma, ASMarea/PBM was greater in cases of fatal asthma in large (p<0.001) and medium (p<0.001), but not small, airways. ASMarea/PBM was not related to duration of asthma, age of onset of asthma, sex or smoking. No effect due to study centre, other than that due to sampling strategy, was found. The thickness of the ASM layer is increased in asthma and is related to the severity of asthma but not its duration.
Resumo:
This study evaluated the influence of adhesive layer thickness (ADL) on the resin-dentin bond strength of two adhesive systems (AS) after ther-mal and mechanical loading (TML). A flat superficial dentin surface was exposed with 600-grit SiC paper on 40 molars. After primer application, the adhesive layer of Scotchbond Multipurpose (SBMP) or Clearfil SE Bond (CSEB) was applied in one or two layers to a delimited area (52 mm(2)) and resin blocks (Filtek 2250) were built incrementally: Half of the sample was stored in distilled water (37 C, 24 hours) and submitted to thermal (1,000; 5 degrees-55 degrees C) and mechanical cycles (500,000; 10kgf) [TML]. The other half was stored in distilled water (72 hours). The teeth were then sectioned to obtain sticks (0.8 mm(2)) to be tested under tensile mode (1.0 mm/minute). The fracture mode was analyzed at 400x. The BS from all sticks from the same tooth was averaged for statistical purposes. The data was analyzed by three-way ANOVA. The x(2) test was used (p<0.05) to compare the frequency of pre-testing failure specimens. Higher BS values were observed for SBMP regardless of the ADL. The TML reduced the BS values irrespective of the adhesive employed and the ADL. A higher frequency of pre-testing failure specimens was observed for the cycled groups. A thicker adhesive layer, acting as an intermediate flexible layer, did not min-imize the damage caused by thermal/mechanical load cycling for a three-step etch-and-rinse and two-step self-etch system.
Resumo:
Purpose: To evaluate the cement thickness around oval and circular posts luted in oval post spaces prepared with different drills/tips. Methods: Extracted premolars were endodontically treated and obturated, then randomly divided into three groups (n = 5) according to the tips/drills used for post-space preparation and to the type of fiber post luted: medium grit oval tip + oval posts, fine grit oval tip + oval posts, Mtwo Post File drill + circular posts. The specimens were sectioned in horizontal slices; one slice per canal third was chosen for each post-space, resulting in three slices for each specimen. The distances between the canal wall and the post perimeter were measured on SEM images of each slice. Results: The fine grit tip + oval post group obtained statistically significant lower cement thicknesses than the other groups (P < 0.05), in particular in the apical third. The MtwoPF + circular post group showed the highest cement thickness, comparable to that of the medium tip + oval post group. A good post fitting in oval-shaped canals can be obtained using a fine grit oval tip combined with oval posts. (Am J Dent 2009;22:290-294).
Resumo:
OBJECTIVES The goal of this study was to determine whether wall stress at rest and during stress could explain the influence of left ventricular (LV) morphology on the accuracy of dobutamine stress echocardiography (DSE). BACKGROUND The sensitivity of DSE appears to be reduced in patients with concentric remodeling, but the cause of this finding is unclear. METHODS We studied 161 patients without resting wall motion abnormalities who underwent DSE and coronary angiography. Patients were classified into four groups according to relative wan thickness (normal
Resumo:
PURPOSE: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). METHODS: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. RESULTS: There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 +/- 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 +/- 0.24 vs. 0.74 +/- 0.23 and 1.82 +/- 0.50 vs. 1.95 +/- 0.51 ml/g/min; p < or = 0.05, respectively) and also during CPT in DM but less pronounced (0.81 +/- 0.24 vs. 0.83 +/- 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p < or = 0.014; r = -0.46, p < or = 0.007; and r = -0.33, p < or = 0.041, respectively). CONCLUSIONS: The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.