565 resultados para WAVELET
Resumo:
Dissertação para obtencão do Grau de Mestre em Engenharia Civil - Perfil Estruturas
Resumo:
The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável
Resumo:
\The idea that social processes develop in a cyclical manner is somewhat like a `Lorelei'. Researchers are lured to it because of its theoretical promise, only to become entangled in (if not wrecked by) messy problems of empirical inference. The reasoning leading to hypotheses of some kind of cycle is often elegant enough, yet the data from repeated observations rarely display the supposed cyclical pattern. (...) In addition, various `schools' seem to exist which frequently arrive at di erent conclusions on the basis of the same data." (van der Eijk and Weber 1987:271). Much of the empirical controversies around these issues arise because of three distinct problems: the coexistence of cycles of di erent periodicities, the possibility of transient cycles and the existence of cycles without xed periodicity. In some cases, there are no reasons to expect any of these phenomena to be relevant. Seasonality caused by Christmas is one such example (Wen 2002). In such cases, researchers mostly rely on spectral analysis and Auto-Regressive Moving-Average (ARMA) models to estimate the periodicity of cycles.1 However, and this is particularly true in social sciences, sometimes there are good theoretical reasons to expect irregular cycles. In such cases, \the identi cation of periodic movement in something like the vote is a daunting task all by itself. When a pendulum swings with an irregular beat (frequency), and the extent of the swing (amplitude) is not constant, mathematical functions like sine-waves are of no use."(Lebo and Norpoth 2007:73) In the past, this di culty has led to two di erent approaches. On the one hand, some researchers dismissed these methods altogether, relying on informal alternatives that do not meet rigorous standards of statistical inference. Goldstein (1985 and 1988), studying the severity of Great power wars is one such example. On the other hand, there are authors who transfer the assumptions of spectral analysis (and ARMA models) into fundamental assumptions about the nature of social phenomena. This type of argument was produced by Beck (1991) who, in a reply to Goldstein (1988), claimed that only \ xed period models are meaningful models of cyclic phenomena".We argue that wavelet analysis|a mathematical framework developed in the mid-1980s (Grossman and Morlet 1984; Goupillaud et al. 1984) | is a very viable alternative to study cycles in political time-series. It has the advantage of staying close to the frequency domain approach of spectral analysis while addressing its main limitations. Its principal contribution comes from estimating the spectral characteristics of a time-series as a function of time, thus revealing how its di erent periodic components may change over time. The rest of article proceeds as follows. In the section \Time-frequency Analysis", we study in some detail the continuous wavelet transform and compare its time-frequency properties with the more standard tool for that purpose, the windowed Fourier transform. In the section \The British Political Pendulum", we apply wavelet analysis to essentially the same data analyzed by Lebo and Norpoth (2007) and Merrill, Grofman and Brunell (2011) and try to provide a more nuanced answer to the same question discussed by these authors: do British electoral politics exhibit cycles? Finally, in the last section, we present a concise list of future directions.
Resumo:
Spread spectrum, Automotive Radar, Indoor Positioning Systems, Ultrasonic and Microwave Imaging, super resolution technique and wavelet transform
Resumo:
The comparative analysis of continuous signals restoration by different kinds of approximation is performed. The software product, allowing to define optimal method of different original signals restoration by Lagrange polynomial, Kotelnikov interpolation series, linear and cubic splines, Haar wavelet and Kotelnikov-Shannon wavelet based on criterion of minimum value of mean-square deviation is proposed. Practical recommendations on the selection of approximation function for different class of signals are obtained.
Resumo:
En aquest article es fa una descripció dels procediments realitzats per enregistrar dues imatges geomètricament, de forma automàtica, si es pren la primera com a imatge de referència. Es comparen els resultats obtinguts mitjançant tres mètodes. El primer mètode és el d’enregistrament clàssic en domini espacial maximitzant la correlació creuada (MCC)[1]. El segon mètode es basa en aplicar l’enregistrament MCC conjuntament amb un anàlisi multiescala a partir de transformades wavelet [2]. El tercer mètode és una variant de l’anterior que es situa a mig camí dels dos. Per cada un dels mètodes s’obté una estimació dels coeficients de la transformació que relaciona les dues imatges. A continuació es transforma per cada cas la segona imatge i es georeferencia respecte la primera. I per acabar es proposen unes mesures quantitatives que permeten discutir i comparar els resultats obtinguts amb cada mètode.
Resumo:
JPEG 2000 és un estàndard de compressió d'imatges que utilitza tècniques estat de l’art basades en la transformada wavelet. Els principals avantatges són la millor compressió, la possibilitat d’operar amb dades comprimides i que es pot comprimir amb i sense pèrdua amb el mateix mètode. BOI és la implementació de JPEG 2000 del Grup de Compressió Interactiva d’Imatges del departament d’Enginyeria de la Informació i les Comunicacions, pensada per entendre, criticar i millorar les tecnologies de JPEG 2000. La nova versió intenta arribar a tots els extrems de l’estàndard on la versió anterior no va arribar.
Resumo:
Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space H is L2(Rn), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m.
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.