995 resultados para Vulnerabilidade ao stress
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
An experimental technique is proposed for the estimation of crack length as well as crack closure/opening stress during fatigue crack growth. A specially designed, single cantilever, crack opening displacement gauge is used to monitor these variables during fatigue crack propagation testing. The technique was experimentally validated through electronfractography.
Resumo:
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.
Resumo:
The structural integrity of any member subjected to a load gets impaired due to the presence of cracks or crack-like defects. The notch severity is one of the several parameters that promotes the brittle fracture. The most severe one is an ideal crack with infinitesimal width and infinitesimal or zero root radius. Though analytical investigations can handle an ideal crack, experimental work, either to validate the analytical conclusions or to impose the bounds, needs to be carried out on models or specimens containing the cracks which are far from the ideal ones. Thus instead of an ideal crack with infinitesimal width the actual model will have a slot or a slit of finite width and instead of a crack ending in zero root radius, the model contains a slot having a finite root radius. Another factor of great significance at the root is the notch angle along which the transition from the slot to the root takes place. This paper is concerned with the photoelastic determination of the notch stress intensity factor in the case of a “crack” subjected to Mode 1 deformation.
Resumo:
The importance of interlaminar stresses has prompted a fresh look at the theory of laminated plates. An important feature in modelling such laminates is the need to provide for continuity of some strains and stresses, while at the same time allowing for the discontinuities in the others. A new modelling possibility is examined in this paper. The procedure allows for discontinuities in the in-plane stresses and transverse strains and continuity in the in-plane strains and transverse stresses. This theory is in the form of a heirarchy of formulations each representing an iterative step. Application of the theory is illustrated by considering the example of an infinite laminated strip subjected to sinusoidal loading.
Resumo:
A simple mathematical model depicting blood flow in the capillary is developed with an emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this study the effect of inertia has been neglected in comparison with the viscosity on the basis of the smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is shown that an increase in the couple stress parameter increases the resistance to the flow and thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian case has also been made.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effects of heat acclimation interventions aimed at protecting health and performance from exertional heat stress.
Resumo:
This paper reports an experimental investigation carried out, using the photoelastic technique, to determine the Mode I stress intensity factor in case of cracks of varying a/w ratio in single edge-notch specimens. The photoelastic information was analysed using the several methods proposed by earlier workers. The experimental results are compared with the analytical expressions.
Resumo:
Research on the physiological response of crop plants to drying soils and subsequent water stress has grouped plant behaviours as isohydric and anisohydric. Drying soil conditions, and hence declining soil and root water potentials, cause chemical signals—the most studied being abscisic acid (ABA)—and hydraulic signals to be transmitted to the leaf via xylem pathways. Researchers have attempted to allocate crops as isohydric or anisohydric. However, different cultivars within crops, and even the same cultivars grown in different environments/climates, can exhibit both response types. Nevertheless, understanding which behaviours predominate in which crops and circumstances may be beneficial. This paper describes different physiological water stress responses, attempts to classify vegetable crops according to reported water stress responses, and also discusses implications for irrigation decision-making.
Resumo:
Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.
Resumo:
Stanniocalcin-1 (STC-1) is a 56 kD homodimeric protein which was originally identified in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. STC-1 was considered unique to fish until the cloning of cDNA for human STC-1 in 1995 and mouse Stc-1 in 1996. STC-1 is conserved through evolution with human and salmon STC-1 sharing 60% identity and 80% similarity. The surprisingly high homology between mammalian and fish STC-1 and the protective actions of STC-1 in terminally differentiated neurons, originally reported by my colleagues, prompted me to further study the role of STC-1 in cell stress and differentiation. One purpose was to determine whether there is an inter-relationship between terminally differentiated cells and STC-1 expression. The study revealed an accumulation of STC-1 in mature megakaryocytes and adipocytes, i.e. postmitotic cells with limited or lost proliferative capacity. Still proliferating uninduced cells were negative for STC-1 mRNA and protein, whereas differentiating cells accumulated STC-1 in their cytoplasm. Interestingly, in liposarcomas the grade inversely correlated with STC-1 expression. Another aim was to study how STC-1 gene expression is regulated. Given that IL-6 is a cytokine with neuroprotective actions, by unknown mechanisms, we examined whether IL-6 regulates STC-1 gene expression. Treatment of human neural Paju cells with IL-6 induced a dose-dependent upregulation of STC-1 mRNA levels. This induction of STC-1 expression by IL-6 occurred mainly through the MAPK signaling pathway. Furthermore, I studied the role of IL-6-mediated STC-1 expression as a mechanism of cytoprotection conferred by hypoxic preconditioning (HOPC) in brain and heart. My findings show that Stc-1 was upregulated in brain after hypoxia treatment. In the brain of IL-6 deficient mice, however, no upregulation of Stc-1 expression was evident. After induced brain injury the STC-1 response in brains of IL-6 transgenic mice, with IL-6 overexpression in astroglial cells, was stronger than in brains of WT mice. These results indicate that IL-6-mediated expression of STC-1 is one molecular mechanism of HOPC-induced tolerance to brain ischemia. The protection conferred by HOPC in heart occurs during a bimodal time course comprising early and delayed preconditioning. Interestingly, my results showed that the expression of Stc-1 in heart was upregulated in a biphasic manner during HOPC. IL-6 deficient mice did not, however, show a similar biphasic manner of Stc-1 upregulation as did WT mice. Instead, only an early upregulation of Stc-1 expression was evident. The results suggest that the upregulation of Stc-1 during the delayed preconditioning is IL-6-dependent. The upregulated expression of Stc-1 during the early preconditioning, however, is only partly IL-6-dependent and possibly also directly mediated by HIF-1. These findings suggest that STC-1 is a pro-survival protein for terminally differentiated cells and that STC-1 expression may in fact be regulated by stress. In addition, I show that STC-1 gene upregulation, mediated in part by IL-6, is a new mechanism of protection conferred by HOPC in brain and heart. Because of its importance for fundamental biological processes, such as differentiation and cytoprotection, STC-1 may have therapeutic implications for management of stroke, neurodegenerative diseases, cancer, and obesity.