939 resultados para Voronoi Diagram
Resumo:
Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid-vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.
Resumo:
Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.
Resumo:
Phase relations in the system Bi-Sr-Cu-O at 1123 K have been investigated using optical microscopy, electron-probe microanalysis (EPMA) and powder X-ray diffraction (XRD) of equilibrated samples. Differential thermal analysis (DTA) was used to confirm liquid formation for compositions rich in BiO1.5. Compositions along the three pseudo-binary sections and inside the pseudo-ternary triangle have been examined. The attainment of equilibrium was facilitated by the use of freshly prepared SrO as the starting material. The loss of Bi2O3 from the sample was minimized by double encapsulation. A complete phase diagram at 1123 K is presented. It differs significantly from versions of the phase diagram published recently.
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.
Resumo:
The phase diagram of the Ni-W-O system at 1200 K was established by metallographic and X-ray identification of the phases present after equilibration at controlled oxygen potentials. The oxygen partial pressures over the samples were fixed by metered streams of CO+CO2 gas mixtures. There was only one ternary oxide, nickel tungstate (NiWO4), in the Ni-W-O system at a total pressure of 1 atm, and this compound decomposed to a mixture of Ni+WO2.72 on lowering the oxygen potential. The Gibbs' free energy of formation of NiWO4 was determined from the measurement of the e.m.f. of the solid oxide galvanic cell, Pt, Ni+NiWO4+WO2.72/CaO-ZrO2/Ni+NiO, Pt and thermodynamic properties of tungsten and nickel oxides available in the literature. For the reaction, NiO(s)+WO3(s)rarrNiWO4(s) DeltaG°=–10500–0.708 T (±250) cal mol–1.
Resumo:
Phase relations in the system CaO-Fe2O3-Y2O3 in air (P-O2/P-o = 0.21) were explored by equilibrating samples representing eleven compositions in the ternary at 1273 K, followed by quenching to room temperature and phase identification using XRD. Limited mutual solubility was observed between YFeO3 and Ca2Fe2O5. No quaternary oxide was identified. An isothermal section of the phase diagram at 1273 K was constructed from the results. Five three-phase regions and four extended two-phase regions were observed. The extended two-phase regions arise from the limited solid solutions based on the ternary oxides YFeO3 and Ca2Fe2O5. Activities of CaO, Fe2O3 and Y2O3 in the three-phase fields were computed using recently measured thermodynamic data on the ternary oxides. The experimental phase diagram is consistent with thermodynamic data. The computed activities of CaO indicate that compositions of CaO-doped YFeO3 exhibiting good electrical conductivity are not compatible with zirconia-based electrolytes; CaO will react with ZrO2 to form CaZrO3.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Phase relations and thermodynamic properties of condensed phases in the system calcium-copper-oxygen
Resumo:
The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.
Resumo:
The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
The thermodynamic properties of K2CO3 -KSO, solid solutions with hexagonal structure have been measured using a solid-state cell, incorporating a composite solid electrolyte with step-changes in composition. The cell with the configuration Pt, CO2' + O2' || K2CO3 | K2(CO3)x(SO4)1-x || CO2'' + O2'' + Pt X =1 X=X was investigated in the temperature range of 925 to 1165 K. The composite gradient solid electrolyte consisted of pure K2CO3 at one extremity and the solid solution under study at the other. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes and temperature was demonstrated. The activity of K2CO3 in the solid solution was measured by three techniques. All three methods gave identical results, indicating unit transport number for K+ ions and negligible diffusion potential due to concentration gradients of carbonate and sulfate ions. The activity of K2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs energy of mixing of the solid solution can be represented using a subregular solution model DELTAG(E) = X(1 - X)[5030X + 4715(1 - X)] J mol-1 By combining this information with the phase diagram, mixing properties of the liquid phase were obtained.
Resumo:
We consider the possibility of fingerprinting the presence of heavy additional Z' bosons that arise naturally in extensions of the standard model such as E-6 models and left-right symmetric models, through their mixing with the standard model Z boson. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the standard model predictions for these quantities with right-handed electrons and left-handed positrons at root s= 800GeV. The deviations being less pronounced at smaller centre of mass energies as the models are already tightly constrained. Our work suggests that the ILC should have a strong beam polarization physics program particularly with these configurations. On the other hand, a forward backward asymmetry and lepton fraction in the backward direction are more sensitive to new physics with realistic polarization due to interesting interplay with the neutrino t-channel diagram. This process complements the study of fermion pair production processes that have been considered for discrimination between these models.
Resumo:
The thermodynamic properties of Na2CO3-Na2SO4 solid solution with hexagonal structure have been measured in the temperature range of 873 to 1073 K, using a composite-gradient solid electrolyte. The cell used can be represented as The composite-gradient solid electrolyte consisted of pure Na2CO3 at one extremity and the solid solution under study at the other, with variation in composition across the electrolyte. A CO2 + O2 + Ar gas mixture was used to fix the chemical potential of sodium at each electrode. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes has been demonstrated. The activity of Na2CO3 in the solid solution was measured by two techniques. In the first method, the electromotive force (emf) of the cell was measured with the same CO2 + O2 + Ar mixture at both electrodes. The resultant emf is directly related to the activity of Na2CO3 at the solid solution electrode. By the second approach, the activity was calculated from the difference in compositions Of CO2 + O2 + Ar mixtures at the two electrodes required to produce a null emf. Both methods gave identical results. The second method is more suitable for gradient solid electrolytes that exhibit significant electronic conduction. The activity of Na2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs' energy of mixing of the solid solution can be represented using a subregular solution model such as the following: DELTAG(E) = X(1 - X)[6500(+/-200)X + 3320(+/-80)(1 - X)J mol-1 where X is the mole fraction of Na2CO3. By combining this information with the phase diagram, mixing properties of the liquid phase are obtained.
Resumo:
Nanoscale dispersions of intermetallic Ti2Ni particles in an ordered TiNi intermetallic matrix have been produced by rapid solidification processing of near equiatomic TiNi alloys containing small amount of Si utilising the principle of kinetic competition in the undercooled liquid, A detailed characterisation of the microstructures obtained by different processing conditions was carried out to establish the trend of the refinement of the scale of microstructure. The observed microstructural conditions are rationalised in terms of a metastable phase diagram and the Uhlmann, Chalmers and Jackson theory of the trapping of second phase particles by a moving interface.