935 resultados para Visual Cortex. Local Field Potential. Assemblies. Context stimuli


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT : The whisker-to-barrel pathway of rodents is formed by a series of somatotopic projections from the mystacial whisker follicles to the layer IV of the primary somatosensory cortex such that each follicle corresponds to a cluster of cortical neurons called barrel. Barrels are present in layer IV but form part of functional columns that comprise the entire depth of the somatosensory cortex. Interestingly, the cortex of the barrelless mouse strain (BRL) is organized such a manner that thalamocortical afferents do not remodel their projections in layer IV and barrels fail to appear. Nevertheless, functionally, a columnar organization persists, indicating that functional columns are not only provided by thalamocortical projections and layer IV cells. Since in the visual cortex of cats, layer VI cells contribute to the response properties of layer IV neurons, we wonder whether layer VI pyramidal cells could contribute to the columnar organization of the primary somatosensory cortex of mice. To address -this question, we morphologically analyzed the distribution of intracortical axon collaterals of layer VI neurons after in-vivo juxtacellular injections of biocytin in the C2 barrel column. Injected hemispheres were tangentially serial cut and intracortical collaterals of individual layer VI neurons were reconstructed at the light microscopic level. The position of axonal boutons was recorded to evaluate the distribution of presumed synaptic contacts. In normal (NOR) mice, cluster analysis shows that layer VI pyramidal cells can be classified in four statistically different clusters of neurons. Moreover, we assume that two classes are formed by cortico-cortical neurons and two classes are formed by cortico-thalamic neurons. Looking at the direction of the main axon in the white matter, we noticed that its orientation correlates perfectly with the type of neuron: cortico-cortical neurons send main axon medially whereas cortico-thalamic neurons send main axon laterally. Performing the same study in the BRL strain, we showed that the BRL mutation affects layer VI pyramidal cells tangentially and radially: the effects of the mutation are illustrated by a significant decrease of the index of colurnnarization and a significant decrease of percentage of boutons in granular and supragranular layers comparing to NOR neurons. In spite of these differences, the same four classes of layer VI neurons have been found in BRL mice. Using a tangential analysis of the boutons distribution, we showed that putative synapses are distributed mainly in the C2 barrel column. This was observed for each layer, type of neuron, cluster or strain, indicating that layer VI pyramidal cells could participate to the functional columnar organization of the barrel cortex. To determine post-synaptic partners of layer VI neurons in layer IV, we conducted an ultrastructural analysis of layer VI-to-IV contacts. We showed that synapses principally occur on spines and spiny dendritic shafts, supposed to belong to excitatory neurons. We furthermore showed that pre-synaptic elements are significantly different between en passant and terminaux contacts, which support hypothesis that terminaux boutons should show longer duration of facilitation than en passant boutons. RÉSUMÉ : Le «whisker-to-barrel pathway» des rongeurs est caractérisé par une série de projections somatotopiques depuis les follicules des moustaches ('whiskers') jusqu'à la couche IV de l'aire somatosensorielle primaire, de telle façon que chaque follicule corresponde à un groupe de neurones corticaux appelés tonneaux (`barrels'). Les tonneaux sont seulement présents en couche IV mais font partie de colonnes fonctionnelles qui s'étendent sur toute la profondeur du cortex somatosensoriel. Chez les souris mutantes barrelless (BRL), le cortex somatosensoriel est organisé de façon telle que lés afférences thalamocorticales ne remodellent pas leurs projections en couche IV et que les tonneaux n'apparaissent pas. Fonctionnellement, pourtant, une organisation en colonnes persiste, ce qui indique que les colonnes fonctionnelles ne sont pas uniquement produites par les projections thalamocorticales et par les cellules de la couche IV. Puisque les cellules de la couche VI contribuent à influencer les réponses des cellules de la couche IV dans le cortex visuel du chat, nous nous sommes demandé si ces cellules ne pourraient pas aussi contribuer à l'organisation en colonnes du cortex somatosensoriel primaire de la souris. Pour répondre à cette question, nous avons analysé de façon morphologique la distribution intracorticale des collatéraux axonaux de neurones de la couche VI. Suite à des injections juxtacellulaires de biocytine in-vivo dans la colonne C2, les hémisphères cérébraux ont été tangentiellement coupés en série et les collatéraux intracorticaux des neurones de la couche VI ont été reconstruits en microscopie optique. La position des boutons axonaux a aussi été enregistrée pour évaluer la distribution des contacts synpptiques potentiels. Chez les souris NOR, une analyse multivariée montre que les cellules pyramidales de la couche VI sont distribuées en quatre classes. Deux de ces classes sont probablement formées de neurons cortico-corticaux, alors que les deux autres sont probablement formées de neurones corticothalamiques. En observant la direction de l'axone principal dans la matière blanche, nous avons noté que son orientation est parfaitement corrélée avec le type supposé de neurone : les neurones corticocorticaux envoient leurs axones principaux médiallement, alors que les neurons cortico-thalamiques envoient leurs axones principaux latéralement. En menant la même étude chez les souris BRL, nous avons montré que la mutation affecte les cellules pyramidales de la couche VI de façon tangentielle, mais aussi radiaire : les effets de 1a mutation se traduisent par une diminution significative de l'index de « columnarization » et de la connectivité en couches granulaire et supragranulaire. Malgré ces différences, les quatre mêmes classes de neurones ont été retrouvées. En utilisant une analyse tangentielle de la distribution des boutons, nous avons montré que les synapses potentielles sont distribuées principalement dans la colonne C2. Cette observation a été faite dans chaque couche, chaque type de neurones, chaque classe de neurones et chaque souche de souris, indicant que les cellules de la couche VI participent certainement à l'organisation en colonne du cortex somatosensoriel. Pour déterminer les partenaires post-synaptiques des cellules de la couche VI en couche IV, nous avons conduit une analyse ultrastructurelle de ces contacts. Nous avons montré que les synapses interviennent principalement sur les épines et sur les dendrites supposés appartenir à des cellules excitatrices. Nous avons aussi montré que les éléments pré-synaptiques de ces synapses sont significativement differents selon le type de bouton, en passant ou terminal, ce qui supporte l'hypothèse que les boutons terminaux seraient capables d'une plus longue facilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT are functionally linked and temporally synchronized during time encoding whereas they are functionally independent and operate serially (V1 followed by V5/MT) while maintaining temporal information in working memory. These data challenge the traditional view of V1 and V5/MT as visuo-spatial features detectors and highlight the functional contribution and the temporal dynamics of these brain regions in the processing of time in millisecond range. The present project resulted in the paper entitled: 'How the visual brain encodes and keeps track of time' by Paolo Salvioni, Lysiann Kalmbach, Micah Murray and Domenica Bueti that is now submitted for publication to the Journal of Neuroscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the postnatal development of cat visual cortex and corpus callosum the molecular composition of tau proteins varied with age. In both structures, they changed between postnatal days 19 and 39 from a set of two juvenile forms to a set of at least two adult variants with higher molecular weights. During the first postnatal week, tau proteins were detectable with TAU-1 antibody in axons of corpus callosum and visual cortex, and in some perikarya and dendrites in the visual cortex. At later ages, tau proteins were located exclusively within axons in all cortical layers and in the corpus callosum. Dephosphorylation of postnatal day 11 cortical tissue by alkaline phosphatase strongly increased tau protein immunoreactivity on Western blots and in numerous perikarya and dendrites in all cortical layers, in sections, suggesting that some tau forms had been unmasked. During postnatal development the intensity of this phosphate-dependent somatodendritic staining decreased, but remained in a few neurons in cortical layers II and III. On blots, the immunoreactivity of adult tau to TAU-1 was only marginally increased by dephosphorylation. Other tau antibodies (TAU-2, B19 and BR133) recognized two juvenile and two adult cat tau proteins on blots, and localized tau in axons or perikarya and dendrites in tissue untreated with alkaline phosphatase. Tau proteins in mature tissue were soluble and not associated with detergent-resistant structures. Furthermore, dephosphorylation by alkaline phosphatase resulted in the appearance of more tau proteins in soluble fractions. Therefore tau proteins seem to alter their degree of phosphorylation during development. This could affect microtubule stability as well as influence axonal and dendritic differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to interact with the multisensory world that surrounds us, we must integrate various sources of sensory information (vision, hearing, touch...). A fundamental question is thus how the brain integrates the separate elements of an object defined by several sensory components to form a unified percept. The superior colliculus was the main model for studying multisensory integration. At the cortical level, until recently, multisensory integration appeared to be a characteristic attributed to high-level association regions. First, we describe recently observed direct cortico-cortical connections between different sensory cortical areas in the non-human primate and discuss the potential role of these connections. Then, we show that the projections between different sensory and motor cortical areas and the thalamus enabled us to highlight the existence of thalamic nuclei that, by their connections, may represent an alternative pathway for information transfer between different sensory and/or motor cortical areas. The thalamus is in position to allow a faster transfer and even an integration of information across modalities. Finally, we discuss the role of these non-specific connections regarding behavioral evidence in the monkey and recent electrophysiological evidence in the primary cortical sensory areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between electrophysiological and functional magnetic resonance imaging (fMRI) signals remains poorly understood. To date, studies have required invasive methods and have been limited to single functional regions and thus cannot account for possible variations across brain regions. Here we present a method that uses fMRI data and singe-trial electroencephalography (EEG) analyses to assess the spatial and spectral dependencies between the blood-oxygenation-level-dependent (BOLD) responses and the noninvasively estimated local field potentials (eLFPs) over a wide range of frequencies (0-256 Hz) throughout the entire brain volume. This method was applied in a study where human subjects completed separate fMRI and EEG sessions while performing a passive visual task. Intracranial LFPs were estimated from the scalp-recorded data using the ELECTRA source model. We compared statistical images from BOLD signals with statistical images of each frequency of the eLFPs. In agreement with previous studies in animals, we found a significant correspondence between LFP and BOLD statistical images in the gamma band (44-78 Hz) within primary visual cortices. In addition, significant correspondence was observed at low frequencies (<14 Hz) and also at very high frequencies (>100 Hz). Effects within extrastriate visual areas showed a different correspondence that not only included those frequency ranges observed in primary cortices but also additional frequencies. Results therefore suggest that the relationship between electrophysiological and hemodynamic signals thus might vary both as a function of frequency and anatomical region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In newborn kittens, cortical auditory areas (including AI and AII) send transitory projections to ipsi- and contralateral visual areas 17 and 18. These projections originate mainly from neurons in supragranular layers but also from a few in infragranular layers (Innocenti and Clarke: Dev. Brain Res. 14:143-148, '84; Clarke and Innocenti: J. Comp. Neurol. 251:1-22, '86). The postnatal development of these projections was studied with injections of anterograde tracers (wheat germ agglutinin-horseradish peroxidase [WGA-HRP]) in AI and AII and of retrograde tracers (WGA-HRP, fast blue, diamidino yellow, rhodamine-labeled latex beads) in areas 17 and 18. It was found that the projections are nearly completely eliminated in development, this, by the end of the first postnatal month. Until then, most of the transitory axons seem to remain confined to the white matter and the depth of layer VI; a few enter it further but do not appear to form terminal arbors. As for other transitory cortical projections the disappearance of the transitory axons seems not to involve death of their neurons of origin. In kittens older than 1 month and in normal adult cats, retrograde tracer injections restricted to, or including, areas 17 and 18 label only a few neurons in areas AI and AII. Unlike the situation in the kitten, nearly all of these are restricted to layers V and VI. A similar distribution of neurons projecting from auditory to visual areas is found in adult cats bilaterally enucleated at birth, which suggests that the postnatal elimination of the auditory-to-visual projection is independent of visual experience and more generally of information coming from the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the case study of a French-Spanish bilingual dyslexic girl, MP, who exhibited a severe visual attention (VA) span deficit but preserved phonological skills. Behavioural investigation showed a severe reduction of reading speed for both single items (words and pseudo-words) and texts in the two languages. However, performance was more affected in French than in Spanish. MP was administered an intensive VA span intervention programme. Pre-post intervention comparison revealed a positive effect of intervention on her VA span abilities. The intervention further transferred to reading. It primarily resulted in faster identification of the regular and irregular words in French. The effect of intervention was rather modest in Spanish that only showed a tendency for faster word reading. Text reading improved in the two languages with a stronger effect in French but pseudo-word reading did not improve in either French or Spanish. The overall results suggest that VA span intervention may primarily enhance the fast global reading procedure, with stronger effects in French than in Spanish. MP underwent two fMRI sessions to explore her brain activations before and after VA span training. Prior to the intervention, fMRI assessment showed that the striate and extrastriate visual cortices alone were activated but none of the regions typically involved in VA span. Post-training fMRI revealed increased activation of the superior and inferior parietal cortices. Comparison of pre- and post-training activations revealed significant activation increase of the superior parietal lobes (BA 7) bilaterally. Thus, we show that a specific VA span intervention not only modulates reading performance but further results in increased brain activity within the superior parietal lobes known to housing VA span abilities. Furthermore, positive effects of VA span intervention on reading suggest that the ability to process multiple visual elements simultaneously is one cause of successful reading acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microtubule-associated protein MAP2 was studied in the developing cat visual cortex and corpus callosum. Biochemically, no MAP2a was detectable in either structure during the first postnatal month; adult cortex revealed small amounts of MAP2a. MAP2b was abundant in cortical tissue during the first postnatal month and decreased in concentration towards adulthood; it was barely detectable in corpus callosum at all ages. MAP2c was present in cortex and corpus callosum at birth; in cortex it consisted of three proteins of similar molecular weights between 65 and 70 kD. The two larger, phosphorylated forms disappeared after postnatal day 28, the smaller form after day 39. In corpus callosum, MAP2c changed from a phosphorylated to an unphosphorylated variant during the first postnatal month and then disappeared. Immunocytochemical experiments revealed MAP2 in cell bodies and dendrites of neurons in all cortical layers, from birth onwards. In corpus callosum, in the first month after birth, a little MAP2, possibly MAP2c, was detectable in axons. The present data indicate that MAP2 isoforms differ in their cellular distribution, temporal appearance and structural association, and that their composition undergoes profound changes during the period of axonal stabilization and dendritic maturation.