946 resultados para Vector Autoregressions
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
Retroviral vectors have many favorable properties for gene therapies, but their use remains limited by safety concerns and/or by relatively lower titers for some of the safer self-inactivating (SIN) derivatives. In this study, we evaluated whether increased production of SIN retroviral vectors can be achieved from the use of matrix attachment region (MAR) epigenetic regulators. Two MAR elements of human origin were found to increase and to stabilize the expression of the green fluorescent protein transgene in stably transfected HEK-293 packaging cells. Introduction of one of these MAR elements in retroviral vector-producing plasmids yielded higher expression of the viral vector RNA. Consistently, viral titers obtained from transient transfection of MAR-containing plasmids were increased up to sixfold as compared with the parental construct, when evaluated in different packaging cell systems and transfection conditions. Thus, use of MAR elements opens new perspectives for the efficient generation of gene therapy vectors.
Resumo:
A procedure is described that allows the simple identification and sorting of live human cells that transcribe actively the HIV virus, based on the detection of GFP fluorescence in cells. Using adenoviral vectors for gene transfer, an expression cassette including the HIV-1 LTR driving the reporter gene GFP was introduced into cells that expressed stably either the Tat transcriptional activator, or an inactive mutant of Tat. Both northern and fluorescence-activated cell sorting (FACS) analysis indicate that cells containing the functional Tat protein presented levels of GFP mRNA and GFP fluorescence several orders of magnitude higher than control cells. Correspondingly, cells infected with HIV-1 showed similar enhanced reporter gene activation. HIV-1-infected cells of the lymphocytic line Jurkat were easily identified by fluorescence-activated cell sorting (FACS) as they displayed a much higher green fluorescence after transduction with the reporter adenoviral vector. This procedure could also be applied on primary human cells as blood monocyte-derived macrophages exposed to the adenoviral LTR-GFP reporter presented a much higher fluorescence when infected with HIV-1 compared with HIV-uninfected cells. The vector described has the advantages of labelling cells independently of their proliferation status and that analysis can be carried on intact cells which can be isolated subsequently by fluorescence-activated cell sorting (FACS) for further culture. This work suggests that adenoviral vectors carrying a virus-specific transcriptional control element controlling the expressions of a fluorescent protein will be useful in the identification and isolation of cells transcribing actively the viral template, and to be of use for drug screening and susceptibility assays.
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. In this paper, we focus on the prediction of drug concentrations using Support Vector Machines (S VM) and the analysis of the influence of each feature to the prediction results. Our study shows that SVM-based approaches achieve similar prediction results compared with pharmacokinetic model. The two proposed example-based SVM methods demonstrate that the individual features help to increase the accuracy in the predictions of drug concentration with a reduced library of training data.
Resumo:
We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
Background: Two or three DNA primes have been used in previous smaller clinical trials, but the number required for optimal priming of viral vectors has never been assessed in adequately powered clinical trials. The EV03/ANRS Vac20 phase I/II trial investigated this issue using the DNA prime/poxvirus NYVAC boost combination, both expressing a common HIV-1 clade C immunogen consisting of Env and Gag-Pol-Nef polypeptide. Methods: 147 healthy volunteers were randomly allocated through 8 European centres to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n¼74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n¼73), stratified by geographical region and sex. T cell responses were quantified using the interferon g Elispot assay and 8 peptide pools; samples from weeks 0, 26 and 28 (time points for primary immunogenicity endpoint), 48 and 72 were considered for this analysis. Results: 140 of 147 participants were evaluable at weeks 26 and/ or 28. 64/70 (91%) in the 3xDNA arm compared to 56/70 (80%) in the 2xDNA arm developed a T cell response (P¼0.053). 26 (37%) participants of the 3xDNA arm developed a broader T cell response (Env plus at least to one of the Gag, Pol, Nef peptide pools) versus 15 (22%) in the 2xDNA arm (P¼0.047). At week 26, the overall magnitude of responses was also higher in the 3xDNA than in the 2xDNA arm (similar at week 28), with a median of 545 versus 328 SFUs/106 cells at week 26 (P<0.001). Preliminary overall evaluation showed that participants still developed T-cell response at weeks 48 (78%, n¼67) and 72 (70%, n¼66). Conclusion: This large clinical trial demonstrates that optimal priming of poxvirus-based vaccine regimens requires 3 DNA regimens and further confirms that the DNA/NYVAC prime boost vaccine combination is highly immunogenic and induced durable T-cell responses.