936 resultados para Variable-variable two dimensional spectroscopy (VV 2D)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) F proportional to-V; (ii) F proportional to-V-2 and (iii) F proportional to-V-delta with 1 < delta < 2. In the course of the dynamics of the particle, if a large initial velocity is considered, case (i) shows that the decay of the particle's velocity is a linear function of the number of collisions with the boundary. For case (ii), an exponential decay is observed, and for 1 < delta < 2, an powerlike decay is observed. Scaling laws were used to characterize a phase transition from limited to unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the Dirac method analysis of two-dimensional induced gravity, coupled to bosonic matter fields, in reduced phase-space. After defining the extended Hamiltonian it is possible to fix the gauge completely. The Dirac brackets can all be obtained in closed form; nevertheless, the results are not particularly simple.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the integrability conditions that we recently obtained in two-dimensional QCD with massless fermions we arrive at a sufficient number of conservation laws to fix the scattering amplitudes involving a local version of the Wilson loop operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schodinger equation for a bidimensional potential. This potential can be applied in several systens in physical and chemistry context, for instance, it can be used to study benzene molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show results from an analysis performed to test the resolving power of a two-dimensional χ2 method proposed previously when applied to the case of kaon interferometry, where no significant contribution from long-lived resonances is expected. For that purpose, use is made of the preliminary E859 K+K+ interferometry data from Si+Au collisions at 14.6/4 GeV/c. Although less sensitivity is achieved in the present case, this analysis seems to favor scenarios with no resonance formation at the AGS energy range. The possible compatibility of data with zero decoupling proper time interval, conjectured by the three-dimensional experimental analysis, is also investigated and is ruled out when considering more realistic dynamical models with expanding sources. Furthermore, these results strongly emphasize that the static Gaussian parametrization cannot be trusted under more realistic conditions, leading to a distorted or even wrong interpretation of the source parameters.