514 resultados para Valleys.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SeaBeam echo sounding, seismic reflection, magnetics, and gravity profiles were run along closely spaced tracks (5 km) parallel to the Atlantis II Fracture Zone on the Southwest Indian Ridge, giving 80% bathymetric coverage of a 30- * 170-nmi strip centered over the fracture zone. The southern and northern rift valleys of the ridge were clearly defined and offset north-south by 199 km. The rift valleys are typical of those found elsewhere on the Southwest Indian Ridge, with relief of more than 2200 m and widths from 22 to 38 km. The ridge-transform intersections are marked by deep nodal basins lying on the transform side of the neovolcanic zone that defines the present-day spreading axis. The walls of the transform generally are steep (25°-40°), although locally, they can be more subdued. The deepest point in the transform is 6480 m in the southern nodal basin, and the shallowest is an uplifted wave-cut terrace that exposes plutonic rocks from the deepest layer of the ocean crust at 700 m. The transform valley is bisected by a 1.5-km-high median tectonic ridge that extends from the northern ridge-transform intersection to the midpoint of the active transform. The seismic survey showed that the floor of the transform contains up to 0.5 km of sediment. Piston-coring at two locations on the transform floor recovered more than 1 m of sand and gravel, which appears to be turbidites shed from the walls of the fracture zone. Extensive dredging showed that more than two-thirds of the crust exposed in the transform valley and its walls were plutonic rocks, principally gabbros and residual mantle peridotites. In contrast, based on dredging and seafloor morphology, only relatively undisrupted pillow basalt flows have been exposed on crust of the same age spreading away from the transform. Magnetic anomalies are well defined out to 11 m.y. over the flanking transverse ridges and transform valley, even where layer 2 appears to be absent. The total opening rate is 1.6 cm/yr, but the arrangement of the anomalies indicates that the spreading for each ridge is asymmetric, with the ridge flanks facing the transform spreading at a rate of 1.0 cm/yr. Such an asymmetric spreading pattern requires that both the northern and southern ridges migrate away from each other at 0.2 cm/yr, thus lengthening the transform at 0.4 cm/yr for the last 11 m.y. To the north, the fracture zone valley is oriented differently from the present-day transform, indicating a paleospreading direction change at 17 m.y. from N10°E to due north-south. This change placed the transform into extension for the 11-m.y. period required for simple orthogonal ridge-transform geometry to be reestablished and produced a large transtensional basin within the transform valley. This basin was split by continued transform slip after 11 m.y., with the larger half moving to the north with the African Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1-12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network. These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel-levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land. The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses. Asymmetrical submarine channel-levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel-levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silty to sandy deposits that are containing large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth in polygonal landscapes, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma deposits up to >50 meters thick. Because of fast incorporation of organic material into syngenetic permafrost during its formation, Yedoma deposits include well-preserved organic matter. Ice-rich deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for future climate warming as increased permafrost thaw is likely to lead to a positive feedback through enhanced greenhouse gas fluxes. Therefore, a detailed assessment of the current Yedoma deposit coverage and its volume is of importance to estimate its potential response to future climate changes. We synthesized the map of the coverage and thickness estimation, which will provide critical data needed for further research. In particular, this preliminary Yedoma map is a great step forward to understand the spatial heterogeneity of Yedoma deposits and its regional coverage. There will be further applications in the context of reconstructing paleo-environmental dynamics and past ecosystems like the mammoth-steppe-tundra, or ground ice distribution including future thermokarst vulnerability. Moreover, the map will be a crucial improvement of the data basis needed to refine the present-day Yedoma permafrost organic carbon inventory, which is assumed to be between 83±12 (Strauss et al., 2013, doi:10.1002/2013GL058088) and 129±30 (Walter Anthony et al., 2014, doi:10.1038/nature13560) gigatonnes (Gt) of organic carbon in perennially-frozen archives. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. For compiling this map, we used (1) maps of the previous Yedoma coverage estimates, (2) included the digitized areas from Grosse et al. (2013) as well as extracted areas of potential Yedoma distribution from additional surface geological and Quaternary geological maps (1.: 1:500,000: Q-51-V,G; P-51-A,B; P-52-A,B; Q-52-V,G; P-52-V,G; Q-51-A,B; R-51-V,G; R-52-V,G; R-52-A,B; 2.: 1:1,000,000: P-50-51; P-52-53; P-58-59; Q-42-43; Q-44-45; Q-50-51; Q-52-53; Q-54-55; Q-56-57; Q-58-59; Q-60-1; R-(40)-42; R-43-(45); R-(45)-47; R-48-(50); R-51; R-53-(55); R-(55)-57; R-58-(60); S-44-46; S-47-49; S-50-52; S-53-55; 3.: 1:2,500,000: Quaternary map of the territory of Russian Federation, 4.: Alaska Permafrost Map). The digitalization was done using GIS techniques (ArcGIS) and vectorization of raster Images (Adobe Photoshop and Illustrator). Data on Yedoma thickness are obtained from boreholes and exposures reported in the scientific literature. The map and database are still preliminary and will have to undergo a technical and scientific vetting and review process. In their current form, we included a range of attributes for Yedoma area polygons based on lithological and stratigraphical information from the original source maps as well as a confidence level for our classification of an area as Yedoma (3 stages: confirmed, likely, or uncertain). In its current version, our database includes more than 365 boreholes and exposures and more than 2000 digitized Yedoma areas. We expect that the database will continue to grow. In this preliminary stage, we estimate the Northern Hemisphere Yedoma deposit area to cover approximately 625,000 km². We estimate that 53% of the total Yedoma area today is located in the tundra zone, 47% in the taiga zone. Separated from west to east, 29% of the Yedoma area is found in North America and 71 % in North Asia. The latter include 9% in West Siberia, 11% in Central Siberia, 44% in East Siberia and 7% in Far East Russia. Adding the recent maximum Yedoma region (including all Yedoma uplands, thermokarst lakes and basins, and river valleys) of 1.4 million km² (Strauss et al., 2013, doi:10.1002/2013GL058088) and postulating that Yedoma occupied up to 80% of the adjacent formerly exposed and now flooded Beringia shelves (1.9 million km², down to 125 m below modern sea level, between 105°E - 128°W and >68°N), we assume that the Last Glacial Maximum Yedoma region likely covered more than 3 million km² of Beringia. Acknowledgements: This project is part of the Action Group "The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness" (funded by the International Permafrost Association (IPA) to J. Strauss) and is embedded into the Permafrost Carbon Network (working group Yedoma Carbon Stocks). We acknowledge the support by the European Research Council (Starting Grant #338335), the German Federal Ministry of Education and Research (Grant 01DM12011 and "CarboPerm" (03G0836A)), the Initiative and Networking Fund of the Helmholtz Association (#ERC-0013) and the German Federal Environment Agency (UBA, project UFOPLAN FKZ 3712 41 106).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.