976 resultados para Unit cell dimension
Resumo:
The primary theme of this research was the characterisation of new and novel organo-tellurium complexes, using the technique of single crystal X-ray analysis to establish more firmly the various coordination modes of tellurium. In each study the unit cell dimensions and intensity data were collected using an Enraf-Nonius CAD-4, four circle diffractometer. The raw data collected in turn was transferred to the Birmingham University Honeywell Multics System and processed using the appropriate computer packages for the determination of crystal structures. The molecular and crystal structures of: bis[2-(2-pyridyl)phenyl]tritelluride, bis[2-(N-hydroxy)iminophenyl] ditelluride, 2-(2-pyridyl)phenyltellurium(IV) tribromide, (2-N,N-dimethylbenzylamine-C,N')tellurium(IV)tribromide, 2-dichloro(butyl)tellurobenzaldehyde, 2-dichlorobutotelluro-N-dimethylbenzyl ammonium chloride, dimethyldithiocarbamato[2-(2-pyridyl)phenyl]tellurium(II), dimethyldithiocarbamato[2-(2-quinolinyl)phenyl]tellurium(II) and para-ethoxypheny[2-(2-pyridyl)phenyl]telluride are described. In each structure, the Lewis acidity of tellurium appears to be satisfied by autocomplex formation, through short-range intramolecular secondary bonds between tellurium and an electron denoting species, (generally nitrogen in these structures) with long range weak inter molecular contacts forming in the majority of the tellurium(IV) structures. The order of Lewis acidity in each structure can be considered to be reflected by the length of the short range intramolecular secondary bond, identified, that is, when tellurium has a low Lewis acidity this interaction is long. Interestingly, no primary bonds are found trans to a Te-C covalent bond in any of the above structures, highlighting the strong trans effect of aromatic and aryl groups in tellurium complexes.
Resumo:
The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.
Resumo:
A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.
Resumo:
The preparation and characterization of two new neutral ferric complexes with desolvation-induced discontinuous spin-state transformation above room temperature are reported. The compounds, Fe(Hthpy)(thpy).CH3OH.3H2O (1) and Fe(Hmthpy)(mthpy).2H2O (2), are low-spin (LS) at room temperature and below, whereas their nonsolvated forms are high-spin (HS), exhibiting zero-field splitting. In these complexes, Hthpy, Hmthpy, and thpy, mthpy are the deprotonated forms of pyridoxal thiosemicarbazone and pyridoxal methylthiosemicarbazone, respectively; each is an O,N,S-tridentate ligand. The molecular structures have been determined at 100(1) K using single-crystal X-ray diffraction techniques and resulted in a triclinic system (space group P1) and monoclinic unit cell (space group P21/c) for 1 and 2, respectively. Structures were refined to the final error indices, where RF = 0.0560 for 1 and RF = 0.0522 for 2. The chemical inequivalence of the ligands was clearly established, for the "extra" hydrogen atom on the monodeprotonated ligands (Hthpy, Hmthpy) was found to be bound to the nitrogen of the pyridine ring. The ligands are all of the thiol form; the doubly deprotonated chelates (thpy, mthpy) have C-S bond lengths slightly longer than those of the singly deprotonated forms. There is a three-dimensional network of hydrogen bonds in both compounds. The discontinuous spin-state transformation is accompanied with liberation of solvate molecules. This is evidenced also from DSC analysis. Heat capacity data for the LS and HS phases are tabulated at selected temperatures, the values of the enthalpy and entropy changes connected with the change of spin state were reckoned at DeltaH = 12.5 0.3 kJ mol-1 and DeltaS = 33.3 0.8 J mol-1 K-1, respectively, for 1 and DeltaH = 6.5 0.3 kJ mol-1 and DeltaS = 17.6 0.8 J mol-1 K-1, respectively, for 2
Resumo:
Four novel mononuclear coordination compounds namely: [Fe(Hthpy)2](SO4)1/2·3.5H2O 1, [Fe(Hthpy)2]NO3·3H2O 2, [Fe(H2mthpy)2](CH3C6H4SO3)3·CH3CH2OH 3 and [Fe(Hethpy)(ethpy)]·8H2O 4, (H2thpy = pyridoxalthiosemicarbazone, H2mthpy = pyridoxal-4-methylthiosemicarbazone, H2ethpy = pyridoxal-4-ethylthiosemicarbazone), were synthesized in the absence or presence of organic base, Et3N and NH3. Compounds 1 and 2 are monocationic, and were prepared using the singly deprotonated form of pyridoxalthiosemicarbazone. Both compounds crystallise in the monoclinic system, C2/c and P21/c space group for 1 and 2, respectively. Complex 3 is tricationic, it is formed with neutral bis(ligand) complex and possesses an interesting 3D channel architecture, the unit cell is triclinic, P1 space group. For complex 4, the pH value plays an important role during its synthesis; 4 is neutral and crystallises with two inequivalent forms of the ligand: the singly and the doubly deprotonated chelate of H2ethpy, the unit cell is monoclinic, C2/c space group. Notably, in 1 and 4, there is an attractive infinite three dimensional hydrogen bonding network in the crystal lattice. Magnetic measurements of 1 and 4 revealed that a rather steep spin transition from the low spin to high spin Fe(III) states occurs above 300 K in the first heating step. This transition is accompanied by the elimination of solvate molecules and thus, stabilizes the high spin form due to the breaking of hydrogen bonding networks; compared to 2 and 3, which keep their low spin state up to 400 K.
Resumo:
We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.
Resumo:
We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations. © 2005 Springer Science+Business Media, Inc.
Resumo:
[μ-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4‘)iron(II)] bis(hexafluorophosphate), [Fe(btzb)3](PF6)2, crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T1/2 = 174 K and a hysteresis of about 4 K between T1/2 and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, 57Fe-Mössbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P30¯(No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)3](PF 6)2: 300 K (HS), a = 11.258(6) Å, c = 8.948(6) Å, V = 982.2(10) Å3; 100 K (LS), a = 10.989(3) Å, c = 8.702(2) Å, V = 910.1(4) Å3. The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4‘ coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe−N bond lengths change between 1.993(1) Å at 100 K in the LS state and 2.193(2) Å at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.
Resumo:
The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.
Resumo:
The Norwegian physicist Lars Vegard studied with William H. Bragg in Leeds and then with Wilhelm Wien in Würzburg. There, in 1912, he heard a lecture by Max Laue describing the first X-ray diffraction experiments and took accurate notes which he promptly sent to Bragg. Although now remembered mainly for his work on the physics of the aurora borealis, Vegard also did important pioneering work in three areas of crystallography. He derived chemical insight from a series of related crystal structures that he determined, Vegard's Law relates the unit-cell dimensions of mixed crystals to those of the pure components, and he determined some of the first crystal structures of gases solidified at cryogenic temperatures. © 2013 Taylor and Francis.
Resumo:
The ferroelectric and dielectric properties of cerium (Ce) substituted La2Ti2O7 (LTO) have been investigated. Single phase, dense La2-xCexTi2O7 (x=0.15, 0.25, 0.35) ceramics were prepared by spark plasma sintering. The solubility limit of Ce in La2-xCexTi2O7 was found to be between 0.35 and 0.5. The a-, b- and c-axes of the unit cell decrease with increasing Ce substitution. The Curie point (Tc) of La2-xCexTi2O7 (x=0, 0.15, 0.25, 0.35) decreases and dielectric constant and loss increase with increasing Ce substitution. Cerium can increase the d33 of La2Ti2O7. The highest d33 was 3.9±0.1pC/N for La1.85Ce0.15Ti2O7 textured ceramic. © 2012 Elsevier Ltd.
Resumo:
This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.
Resumo:
This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.
Resumo:
The solid solution system Nd2−xCexTi2O7 has been investigated. The solubility limit of Ce in Nd2−xCexTi2O7 was found to be 0·5–0·75 according to X-ray diffraction and X-ray photoelectron spectroscopy results. Ce substitution increases the b and c axes and the volume of the unit cell due to its larger ionic radius. Nd2−xCexTi2O7 (x = 0·05, 0·25, 0·5, 0·75) textured ceramics were fabricated using spark plasma sintering. The ferroelectric and dielectric properties of the ceramics were studied. Ce substitution decreases the Curie point Tc of Nd2−xCexTi2O7 compounds. The results suggest that the Tc of Ce2Ti2O7 is <1445°C.
Resumo:
Nanostructured copper containing materials of CuO, Cu3(PO4)3 and Cu2P2O7 have been prepared by solid-state pyrolysis of molecular CuCl2·NC5H4OH (I), CuCl2·CNCH2C6H4OH (II), oligomeric [Cu(PPh3)Cl]4 (III), N3P3[OC6H4CH2CN·CuCl]6[PF6] (IV), N3P3[OC6H5]5[OC5H4N·Cu][PF6] (V), polymeric chitosan·(CuCl2)n (VI) and polystyrene-co-4-vinylpyridine PS-b-4-PVP·(CuCl2) (VII) precursors. The products strongly depend on the precursor used. The pyrolytic products from phosphorus-containing precursors (III), (IV) and (V) are Cu phosphates or pyrophosphates, while non-phosphorous-containing precursors (VI) and (VII), result in mainly CuO. The use of chitosan as a solid-state template/stabilizer induces the formation of CuO and Cu2O nanoparticles. Copper pyrophosphate (Cu2P2O7) deposited on Si using (IV) as the precursor exhibits single-crystal dots of average diameter 100 nm and heights equivalent to twice the unit cell b-axis (1.5–1.7 nm) and an areal density of 5.1–7.7 Gigadots/in.2. Cu2P2O7 deposited from precursor (VI) exhibits unique labyrinthine high surface area deposits. The morphology of CuO deposited on Si from pyrolysis of (VI) depends on the polymer/Cu meta ratio. Magnetic measurements performed using SQUID on CuO nanoparticle networks suggest superparamagnetic behavior. The results give insights into compositional, shape and morphological control of the as-formed nanostructures through the structure of the precursors.