902 resultados para Uniformly Convex
Resumo:
Clustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
Resumo:
This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.
Resumo:
For uniformly asymptotically affine (uaa) Markov maps on train tracks, we prove the following type of rigidity result: if a topological conjugacy between them is (uaa) at a point in the train track then the conjugacy is (uaa) everywhere. In particular, our methods apply to the case in which the domains of the Markov maps are Canter sets. We also present similar statements for (uaa:) and C-r Markov families. These results generalize the similar ones of Sullivan and de Faria for C-r expanding circle maps with r > 1 and have useful applications to hyperbolic dynamics on surfaces and laminations.
Resumo:
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire’s shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
Resumo:
RESUMO: Os biomarcadores tumorais permitem identificar os doentes com maior risco de recorrência da doença, predizer a resposta tumoral à terapêutica e, finalmente, definir candidatos a novos alvos terapêuticos. Novos biomarcadores são especialmente necessários na abordagem clínica dos linfomas. Actualmente, esses tumores são diagnosticados através de uma combinação de características morfológicas, fenotípicas e moleculares, mas o prognóstico e o planeamento terapêutico estão quase exclusivamente dependentes de características clínicas. Estes factores clínicos são, na maioria dos linfomas, insuficientes numa proporção significativa dos doentes, em particular, aqueles com pior prognóstico. O linfoma folicular (LF) é, globalmente, o segundo subtipo mais comum de linfoma. É tipicamente uma doença indolente com uma sobrevida média entre os 8 e 12 anos, mas é geralmente fatal quando se transforma num linfoma agressivo de alto grau, habitualmente o linfoma difuso de grandes células B (LDGCB). Morfologicamente e funcionalmente, as células do LF recapitulam as células normais do centro germinativo na sua dependência de sobrevivência do microambiente não-tumoral, especialmente das células do sistema imunológico. Biomarcadores preditivos de transformação não existem pelo que um melhor conhecimento da biologia intrínseca de progressão do LF poderá revelar novos candidatos. Nesta tese descrevo duas abordagens distintas para a descoberta de novos biomarcadores. A primeira, o estudo da expressão global de genes ('genomics') obtidos por técnicas de alto rendimento que analisam todo o genoma humano sequenciado, permitindo identificar novas anomalias genéticas que possam representar mecanismos biológicos importantes de transformação. São descritos novos genes e alterações genómicas associados à transformação do LF, sendo especialmente relevantes as relacionadas com os eventos iniciais de transformação em LDGCB. A segunda, baseou-se em várias hipóteses centradas no microambiente do LF, rico em vários tipos de células nãomalignas. Os estudos imunoarquitectural de macrófagos, células T regulatórias e densidade de microvasos efectuado em biopsias de diagnóstico de doentes com LF tratados uniformemente correlacionaram-se significativamente, e independentemente dos critérios clínicos, com a evolução clínica e, mais importante, com o risco de transformação em LDGCB. Nesta tese, foram preferencialmente utilizadas (e optimizadas) técnicas que permitam o uso de amostras fixadas em parafina e formalina (FFPET). Estas são facilmente acessíveis a partir das biopsias de diagnóstico de rotina presentes nos arquivos de todos os departamentos de patologia, facilitando uma transição rápida dos novos marcadores para a prática clínica. Embora o FL fosse o tema principal da tese, os novos achados permitiram estender facilmente hipóteses semelhantes a outros subtipos de linfoma. Assim, são propostos e validados vários biomarcadores promissores e relacionados com o microambiente não tumoral, sobretudo dependentes das células do sistema imunológico, como contribuintes importantes para a biologia dos linfomas. Estes sugerem novas opções para a abordagem clínica destas doenças e, eventualmente, novos alvos terapêuticos.------------- ABSTRACT: Cancer biomarkers provide an opportunity to identify those patients most at risk for disease recurrence, predict which tumours will respond to different therapeutic approaches and ultimately define candidate biomarkers that may serve as targets for personalized therapy. New biomarkers are especially needed in the management of lymphoid cancers. At present, these tumours are diagnosed using a combination of morphologic, phenotypic and molecular features but prognosis and overall survival are mostly dependent on clinical characteristics. In most lymphoma types, these imprecisely assess a significant proportion of patients, in particular, those with very poor outcomes. Follicular lymphoma (FL) is the second most common lymphoma subtype worldwide. It is typically an indolent disease with current median survivals in the range of 8-12 years, but is usually fatal when it transforms into an aggressive high-grade lymphoma, characteristically Diffuse Large B Cell Lymphoma (DLBCL). Morphologically and functionally it recapitulates the normal cells of the germinal center with its survival dependency on non-malignant immune and immunerelated cells. Informative markers of transformation related to the intrinsic biology of FL progression are needed. Within this thesis two separate approaches to biomarker discovery were employed. The first was to study the global expression of genes (‘genomics’) obtained using high-throughput, wholegenome-wide approaches that offered the possibility for discovery of new genetic abnormalities that might represent the important biological mechanisms of transformation. Gene signatures associated with early events of transformation were found. Another approach relied on hypothesis-driven concepts focusing upon the microenvironment, rich in several non-malignant cell types. The immunoarchitectural studies of macrophages, regulatory T cells and microvessel density on diagnostic biopsies of uniformly treated FL patients significantly predicted clinical outcome and, importantly, also informed on the risk of transformation. Techniques that enabled the use of routine formalin fixed paraffin embedded diagnostic specimens from the pathology department archives were preferentially used in this thesis with the goal of fulfilling a rapid bench-to-beside” translation for these new findings. Although FL was the main subject of the thesis the new findings and hypotheses allowed easy transition into other lymphoma types. Several promising biomarkers were proposed and validated including the implication of several non-neoplastic immune cells as important contributors to lymphoma biology, opening new options for better treatment planning and eventually new therapeutic targets and candidate therapeutics.
Resumo:
As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Introduction More than half of the malaria cases reported in the Americas are from the Brazilian Amazon region. While malaria is considered endemic in this region, its geographical distribution is extremely heterogeneous. Therefore, it is important to investigate the distribution of malaria and to determine regions whereby action might be necessary. Methods Changes in malaria indicators in all municipalities of the Brazilian Amazon between 2003-2004 and 2008-2009 were studied. The malaria indicators included the absolute number of malaria cases and deaths, the bi-annual parasite incidence (BPI), BPI ratios and differences, a Lorenz curve and Gini coefficients. Results During the study period, mortality from malaria remained low (0.02% deaths/case), the percent of municipalities that became malaria-free increased from 15.6% to 31.7%, and the Gini coefficient increased from 82% to 87%. In 2003, 10% of the municipalities with the highest BPI accumulated 67% of all malaria cases, compared with 2009, when 10% of the municipalities (with the highest BPI) had 80% of the malaria cases. Conclusions This study described an overall decrease in malaria transmission in the Brazilian Amazon region. As expected, an increased heterogeneity of malaria indicators was found, which reinforces the notion that a single strategy may not bring about uniformly good outcomes. The geographic clustering of municipalities identified as problem areas might help to define better intervention methods.
Resumo:
Patients with unilateral cleft lip display characteristic nasal changes that are independent of the degree of deformity. Defenders of the intrinsic theory consider these deformities to be due to embryogenic alterations of the alar nasal cartilages. Those that propose the extrinsic theory defend the thesis that the deformity is due to disorganization of the perioral muscles deformed by the cleft. The purpose of this study is to contribute histological evidence to help clarify the issue. PATIENTS AND METHODS: Specimens of the lateral portion of both the healthy and the cleft side of the alar cartilages were obtained from 18 patients. These uniformly cut specimens were stained by hematoxylin and eosin. Samples from 2 patients were excluded due to imperfections. The same pathologist examined all the slides. He was unaware of the origins of the specimens; he counted the number of chondrocytes and quantified the cartilage matrixes. RESULTS: All data was analyzed statistically, and no significant statistical differences were apparent, either in the number of chondrocytes or the cartilage matrix between the healthy side and the cleft side. DISCUSSION: These results apparently support the group that defend the extrinsic theory; nevertheless, the doubt about the composition of the cartilage matrix remains, not only concerning the glycosaminoglycans that compose them, but also regarding elastin and collagen and its linkages that can cause different degrees of collagen consistency.
Resumo:
Profound modifications in the profile of patients are currently being observed within the epidemic context of AIDS, especially with respect to pauperization and feminization of the disease. The population most frequently affected is in the reproductive age, and among adults aged 18 to 24 years, the ratio is 1 man to 1 woman, a phenomenon occurring uniformly all over the world. One of the main challenges for HIV-1-infected pregnant women and their doctors is the effect of the interaction between HIV infection and pregnancy. The present article is a review of the literature; and its objective is to assess the influence of HIV-1 infection seen from the maternal perspective, with a discussion of immunologic function, maternal prognosis, and the HIV-abortion interface. At present, we cannot conclude that pregnancy has a short-term effect on the evolution of HIV infection, but the concomitance of HIV and pregnancy may adversely affect the prognosis of gestation, especially in view of its frequent association with increased abortion and puerperal morbidity rates.