921 resultados para Uncertainty Avoidance
Resumo:
This work presents the basic elements for the analysis of decision under uncertainty: Expected Utility Theory and its citicisms and risk aversion and its measurement. The concepts of certainty equivalent, risk premium, absolute risk aversion and relative risk aversion, and the "more risk averse than" relation are discussed. The work is completed with several applications of decision making under uncertainty to different economic problems: investment in risky assets and portfolio selection, risk sharing, investment to reduce risk, insurance, taxes and income underreporting, deposit insurance and the value of information.
Resumo:
169 p.
Resumo:
This report looks at the events that results in fish deaths on ponds and lakes, and how to control and avoid them. Problems include de-oxygenation of the water, algal growth, water temperature, excessive fish stocks, excessive weed growth and excessive zooplankton
Resumo:
Quantifying scientific uncertainty when setting total allowable catch limits for fish stocks is a major challenge, but it is a requirement in the United States since changes to national fisheries legislation. Multiple sources of error are readily identifiable, including estimation error, model specification error, forecast error, and errors associated with the definition and estimation of reference points. Our focus here, however, is to quantify the influence of estimation error and model specification error on assessment outcomes. These are fundamental sources of uncertainty in developing scientific advice concerning appropriate catch levels and although a study of these two factors may not be inclusive, it is feasible with available information. For data-rich stock assessments conducted on the U.S. west coast we report approximate coefficients of variation in terminal biomass estimates from assessments based on inversion of the assessment of the model’s Hessian matrix (i.e., the asymptotic standard error). To summarize variation “among” stock assessments, as a proxy for model specification error, we characterize variation among multiple historical assessments of the same stock. Results indicate that for 17 groundfish and coastal pelagic species, the mean coefficient of variation of terminal biomass is 18%. In contrast, the coefficient of variation ascribable to model specification error (i.e., pooled among-assessment variation) is 37%. We show that if a precautionary probability of overfishing equal to 0.40 is adopted by managers, and only model specification error is considered, a 9% reduction in the overfishing catch level is indicated.
Resumo:
Stock assessments can be problematic because of uncertainties associated with the data or because of simplified assumptions made when modeling biological processes (Rosenberg and Restrepo, 1995). For example, the common assumption in stock assessments that stocks are homogeneous and discrete (i.e., there is no migration between the stocks) is not necessarily true (Kell et al., 2004a, 2004b).
Resumo:
This contribution illustrates how modern spreadsheets aid the calculation and visualization of yield models and how the effects of uncertainties may be incorporated using Monte Carlo simulation. It is argued that analogous approaches can be implemented for other assessment models of simple to medium complexity justifying wider use of spreadsheets in fisheries analysis and training.