823 resultados para Ultracompact Dwarf Galaxies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’arrivée du spectromètre imageur à transformée de Fourier SITELLE au télescope Canada-France-Hawaï souligne la nécessité d’un calculateur de temps d’exposition permettant aux utilisateurs de l’instrument de planifier leurs observations et leurs demandes de temps de télescope. Une grande partie de mon projet est ainsi le développement d’un code de simulation capable de reproduire les résultats de SITELLE et de son prédecesseur SpIOMM, installé à l’Observatoire du Mont-Mégantic. La précision des simulations est confirmée par une comparaison avec des données SpIOMM et les premières observations de SITELLE. La seconde partie de mon projet consiste en une analyse spectrale de données observationelles. Prenant avantage du grand champ de vue de SpIOMM, les caractéristiques du gaz ionisé (vitesse radiale et intensité) sont étudiées pour l’ensemble de la paire de galaxies en interaction Arp 72. La courbe de rotation dans le visible ainsi que le gradient de métallicité de NGC 5996, la galaxie principale d’Arp 72, sont obtenues ici pour la première fois. La galaxie spirale NGC 7320 est également étudiée à partir d’observations faites à la fois avec SpIOMM et SITELLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afin d’étudier l’historique de formation stellaire et d’enrichissement chimique des galaxies spirales barrées, j’ai simulé l’évolution de 27 galaxies spirales, barrées et non barrées, de diverses masses stellaires et fractions de gaz. Alors que les galaxies non barrées présentent une évolution lente et continue sur les deux milliards d’années que durent nos simulations, les galaxies barrées ont une évolution bien plus explosive, et ce particulièrement pour les galaxies les plus massives. Dans un premier temps, je montre que la présence de la barre entraine un flot important de gaz des régions périphériques vers le centre de la galaxie barrée, causant un sursaut de formation stellaire et une croissance importante de l’abondance chimique centrale, et que l’amplitude et la vitesse à laquelle ce sursaut arrive augmentent avec la masse de la galaxie. Cet épisode de sursaut stellaire entraine alors une diminution importante de la masse de gaz, entrainant à son tour une décroissance de la formation stellaire et une stagnation de l’enrichissement chimique pour le reste de l’évolution de la galaxie. Dans un deuxième temps, je montre qu’à cause de la dynamique en deux périodes très différentes des galaxies barrées, deux galaxies de masse très semblable peuvent avoir des taux de formation stellaire et des métallicités complètement différentes en fonction de leur stade évolutif, stade qu’on ne peut déterminer aisément. Cette difficulté est tout aussi importante lorsqu’on compare le coeur des galaxies barrées et non barrées entre elles, étant donné que des coeurs comparables sont situés dans les galaxies très différentes, et que des galaxies semblables ont des coeurs très différents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afin de caractériser la structure morphologique et les populations stellaires d’un échantillon de treize galaxies spirales, j’ai analysé des images WISE et GALEX, et j’ai construit des diagrammes magnitude-magnitude et couleur-magnitude pixel à pixel. Les diagrammes présentent des groupes de pixels qui correspondent spatialement aux composantes structurales des galaxies. Les diagrammes ainsi que les profils radiaux de brillance de surface indiquent que les variations de la densité surfacique de masse de la vieille population stellaire jouent un rôle important dans la différenciation des structures. On estime l’âge des jeunes complexes stellaires et l’extinction dans ces galaxies en les comparant à des modèles de populations stellaires simples nées de sursauts de formation stellaire instantanée. L’étude de ces propriétés est possible grâce à la combinaison des données ultraviolettes et infrarouge et à la grande sensibilité de la couleur ultraviolette à la variation de l’âge. On observe un gradient d’extinction dont la pente est liée à la présence d’une barre ou d’une activité nucléaire : en effet, l’extinction décroît avec la distance galactocentrique et la pente est plus petite pour les galaxies ayant une barre ou une activité nucléaire. On observe également un gradient d’âge où les régions externes sont moins évoluées que celles du centre sauf pour les galaxies de type tardif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in my thesis addresses the two cornerstones of modern astronomy: Observation and Instrumentation. Part I deals with the observation of two nearby active galaxies, the Seyfert 2 galaxy NGC 1433 and the Seyfert 1 galaxy NGC 1566, both at a distance of $\sim10$ Mpc, which are part of the Nuclei of Galaxies (NUGA) sample. It is well established that every galaxy harbors a super massive black hole (SMBH) at its center. Furthermore, there seems to be a fundamental correlation between the stellar bulge and SMBH masses. Simulations show that massive feedback, e.g., powerful outflows, in Quasi Stellar Objects (QSOs) has an impact on the mutual growth of bulge and SMBH. Nearby galaxies follow this relation but accrete mass at much lower rates. This gives rise to the following questions: Which mechanisms allow feeding of nearby Active Galactic Nuclei (AGN)? Is this feeding triggered by events, e.g., star formation, nuclear spirals, outflows, on $\sim500$ pc scales around the AGN? Does feedback on these scales play a role in quenching the feeding process? Does it have an effect on the star formation close to the nucleus? To answer these questions I have carried out observations with the Spectrograph for INtegral Field Observation in the Near Infrared (SINFONI) at the Very Large Telescope (VLT) situated on Cerro Paranal in Chile. I have reduced and analyzed the recorded data, which contain spatial and spectral information in the H-band ($1.45 \mic-1.85 \mic$) and K-band ($1.95 \mic-2.45 \mic$) on the central $10\arcsec\times10\arcsec$ of the observed galaxies. Additionally, Atacama Large Millimeter/Sub-millimeter Array (ALMA) data at $350$ GHz ($\sim0.87$ mm) as well as optical high resolution Hubble Space Telescope (HST) images are used for the analysis. For NGC 1433 I deduce from comparison of the distributions of gas, dust, and intensity of highly ionized emission lines that the galaxy center lies $\sim70$ pc north-northwest of the prior estimate. A velocity gradient is observed at the new center, which I interpret as a bipolar outflow, a circum nuclear disk, or a combination of both. At least one dust and gas arm leads from a $r\sim200$ pc ring towards the nucleus and might feed the SMBH. Two bright warm H$_2$ gas spots are detected that indicate hidden star formation or a spiral arm-arm interaction. From the stellar velocity dispersion (SVD) I estimate a SMBH mass of $\sim1.74\times10^7$ \msol. For NGC 1566 I observe a nuclear gas disk of $\sim150$ pc in radius with a spiral structure. I estimate the total mass of this disk to be $\sim5.4\times10^7$ \msol. What mechanisms excite the gas in the disk is not clear. Neither can the existence of outflows be proven nor is star formation detected over the whole disk. On one side of the spiral structure I detect a star forming region with an estimated star formation rate of $\sim2.6\times10^{-3}$ \msol\ yr$^{-1}$. From broad Br$\gamma$ emission and SVD I estimate a mean SMBH mass of $\sim5.3\times10^6$ \msol\ with an Eddington ratio of $\sim2\times10^{-3}$. Part II deals with the final tests of the Fringe and Flexure Tracker (FFTS) for LBT INterferometric Camera and the NIR/Visible Adaptive iNterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) in Arizona, USA, which I conducted. The FFTS is the subsystem that combines the two separate beams of the LBT and enables near-infrared interferometry with a significantly large field of view. The FFTS has a cryogenic system and an ambient temperature system which are separated by the baffle system. I redesigned this baffle to guarantee the functionality of the system after the final tests in the Cologne cryostat. The redesign did not affect any scientific performance of LINC-NIRVANA. I show in the final cooldown tests that the baffle fulfills the temperature requirement and stays $<110$ K whereas the moving stages in the ambient system stay $>273$ K, which was not given for the old baffle design. Additionally, I test the tilting flexure of the whole FFTS and show that accurate positioning of the detector and the tracking during observation can be guaranteed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic fields are ubiquitous in galaxy cluster atmospheres and have a variety of astrophysical and cosmological consequences. Magnetic fields can contribute to the pressure support of clusters, affect thermal conduction, and modify the evolution of bubbles driven by active galactic nuclei. However, we currently do not fully understand the origin and evolution of these fields throughout cosmic time. Furthermore, we do not have a general understanding of the relationship between magnetic field strength and topology and other cluster properties, such as mass and X-ray luminosity. We can now begin to answer some of these questions using large-scale cosmological magnetohydrodynamic (MHD) simulations of the formation of galaxy clusters including the seeding and growth of magnetic fields. Using large-scale cosmological simulations with the FLASH code combined with a simplified model of the acceleration of cosmic rays responsible for the generation of radio halos, we find that the galaxy cluster frequency distribution and expected number counts of radio halos from upcoming low-frequency sur- veys are strongly dependent on the strength of magnetic fields. Thus, a more complete understanding of the origin and evolution of magnetic fields is necessary to understand and constrain models of diffuse synchrotron emission from clusters. One favored model for generating magnetic fields is through the amplification of weak seed fields in active galactic nuclei (AGN) accretion disks and their subsequent injection into cluster atmospheres via AGN-driven jets and bubbles. However, current large-scale cosmological simulations cannot directly include the physical processes associated with the accretion and feedback processes of AGN or the seeding and merging of the associated SMBHs. Thus, we must include these effects as subgrid models. In order to carefully study the growth of magnetic fields in clusters via AGN-driven outflows, we present a systematic study of SMBH and AGN subgrid models. Using dark-matter only cosmological simulations, we find that many important quantities, such as the relationship between SMBH mass and galactic bulge velocity dispersion and the merger rate of black holes, are highly sensitive to the subgrid model assumptions of SMBHs. In addition, using MHD calculations of an isolated cluster, we find that magnetic field strengths, extent, topology, and relationship to other gas quantities such as temperature and density are also highly dependent on the chosen model of accretion and feedback. We use these systematic studies of SMBHs and AGN inform and constrain our choice of subgrid models, and we use those results to outline a fully cosmological MHD simulation to study the injection and growth of magnetic fields in clusters of galaxies. This simulation will be the first to study the birth and evolution of magnetic fields using a fully closed accretion-feedback cycle, with as few assumptions as possible and a clearer understanding of the effects of the various parameter choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents detailed observational studies of the extended distributions of gas, galaxies, and dark matter around hyperluminous quasars (HLQSOs) at high redshift. Taken together, these works aim to coherently describe the relationships between these massive, accreting black holes and their environments: the nature of the regions that give rise to such massive black holes, the effect of HLQSO radiation on their surrounding galaxies and gas, and the ability of both galaxies and black holes to shed new light on the formation and evolution of the other.

Chapter 2 focuses on the continuum-color-selected galaxies drawn from the Keck Baryonic Structure Survey (KBSS). The KBSS is a uniquely deep spectroscopic survey of star-forming galaxies in the same volumes of space as 15 HLQSOs at 2.5 < z < 2.9. The three-dimensional distribution of these galaxies among themselves and the nearby HLQSOs is used to infer the extent to which these black holes are associated with overdense peaks in the dark matter and galaxy distribution as quantified by clustering statistics. In conjunction with recent dark-matter simulations, these data provide the first estimates of the host dark-matter halo masses for HLQSOs, providing new insight into the formation and evolution of the most massive black holes at high redshift.

Chapter 3 describes the first results from a new survey (KBSS-Lyα) conducted for this thesis. The KBSS-Lyα survey uses narrowband imaging to identify Lyα-emitters (LAEs) in the ~Mpc regions around eight of the KBSS HLQSOs. Many of these LAEs show the effect of reprocessed HLQSO radiation in their emission through the process known as Lyα fluorescence. In this chapter, these fluorescent LAEs are used to generate a coarse map of the average HLQSO ionizing emission on Mpc scales, thereby setting the first direct constraints of the lifetime and angular distribution of activity for a population of these uniquely luminous black holes.

Chapter 4 contains a more detailed description of the KBSS-Lyα survey itself and the detailed properties of the star-forming and fluorescent objects selected therein. Using imaging and spectroscopic data covering rest-frame UV and optical wavelengths, including spectra from the new near-infrared spectrometer MOSFIRE, we characterize this population of nascent galaxies in terms of their kinematics, enrichment, gas properties, and luminosity distribution while comparing and contrasting them with previously-studied populations of continuum-selected galaxies and LAEs far from the effects of HLQSO emission.

At the conclusion of this thesis, I briefly present future directions for the continuation of this research. In Appendix A, I provide background information on the instrumentation used in this thesis, including my own contributions to MOSFIRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ~ 2.5. These galaxies are selected for their small rest-frame optical sizes (r_e,F160W ~ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ~ 2. The deep observations yield high far-infrared (FIR) luminosities of L_IR = 10^12.3-12.8 L_⨀ and star formation rates (SFRs) of SFR = 200–700 M_⊙ yr^−1, consistent with those of typical star-forming "main sequence" galaxies. The high spatial resolution (FWHM ~ 0 12–0 18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ~ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile (r_e,SFR ~ 1 kpc) is ~30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4×increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity v_circ accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the M-r - v(circ) plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the M_r - v_circ plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > M_r > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By virtue of its proximity and richness, the Virgo galaxy cluster is a perfect testing ground to expand our understanding of structure formation in the Universe. Here, we present a comprehensive dynamical catalogue based on 190 Virgo cluster galaxies (VCGs) in the "Spectroscopy and H-band Imaging of the Virgo cluster" (SHIVir) survey, including kinematics and dynamical masses. Spectroscopy collected over a multi-year campaign on 4-8m telescopes was joined with optical and near-infrared imaging to create a cosmologically-representative overview of parameter distributions and scaling relations describing galaxy evolution in a rich cluster environment. The use of long-slit spectroscopy has allowed the extraction and systematic analysis of resolved kinematic profiles: Halpha rotation curves for late-type galaxies (LTGs), and velocity dispersion profiles for early-type galaxies (ETGs). The latter are shown to span a wide range of profile shapes which correlate with structural, morphological, and photometric parameters. A study of the distributions of surface brightnesses and circular velocities for ETGs and LTGs considered separately show them all to be strongly bimodal, hinting at the existence of dynamically unstable modes where the baryon and dark matter fractions may be comparable within the inner regions of galaxies. Both our Tully-Fisher relation for LTGs and Fundamental Plane analysis for ETGs exhibit the smallest scatter when a velocity metric probing the galaxy at larger radii (where the baryonic fraction becomes sub-dominant) is used: rotational velocity measured in the outer disc at the 23.5 i-mag arcsec^{-2} level, and velocity dispersion measured within an aperture of 2 effective radii, respectively. Dynamical estimates for gas-poor and gas-rich VCGs are merged into a joint analysis of the stellar-to-total mass relation (STMR), stellar TFR, and Mass-Size relation. These relations are all found to contain strong bimodalities or dichotomies between the ETG and LTG samples, alluding to a "mixed scenario'' evolutionary sequence between morphological/dynamical classes that involves both quenching and dry mergers. The unmistakable differentiation between these two galaxy classes appears robust against different classification schemes, and supports the notion that they are driven by different evolutionary histories. Future observations using integral field spectroscopy and including lower-mass galaxies should solidify this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decades star formation has been a very attractive field because knowledge of star formation leads to a better understanding of the formation of planets and thus of our solar system but also of the evolution of galaxies. Conditions leading to the formation of high-mass stars are still under investigation but an evolutionary scenario has been proposed: As a cold pre-stellar core collapses under gravitational force, the medium warms up until it reaches a temperature of 100 K and enters the hot molecular core (HMC) phase. The forming central proto-star accretes materials, increasing its mass and luminosity and eventually it becomes sufficiently evolved to emit UV photons which irradiate the surrounding environment forming a hyper compact (HC) and then a ultracompact (UC) HII region. At this stage, a very dense and very thin internal photon-dominated region (PDR) forms between the HII region and the molecular core. Information on the chemistry allows to trace the physical processes occurring in these different phases of star formation. Formation and destruction routes of molecules are influenced by the environment as reaction rates depend on the temperature and radiation field. Therefore, chemistry also allows the determination of the evolutionary stage of astrophysical objects through the use of chemical models including the time evolution of the temperature and radiation field. Because HMCs host a very rich chemistry with high abundances of complex organic molecules (COMs), several astrochemical models have been developed to study the gas phase chemistry as well as grain chemistry in these regions. In addition to HMCs models, models of PDRs have also been developed to study in particular photo-chemistry. So far, few studies have investigated internal PDRs and only in the presence of outflows cavities. Thus, these unique regions around HC/UCHII regions remain to be examined thoroughly. My PhD thesis focuses on the spatio-temporal chemical evolution in HC/UC HII regions with internal PDRs as well as in HMCs. The purpose of this study is first to understand the impact and effects of the radiation field, usually very strong in these regions, on the chemistry. Secondly, the goal is to study the emission of various tracers of HC/UCHII regions and compare it with HMCs models, where the UV radiation field does not impact the region as it is immediately attenuated by the medium. Ultimately we want to determine the age of a given region using chemistry in combination with radiative transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.