395 resultados para Typic Hapludox
Resumo:
The objective of this work was to evaluate the effect of nitrogen sources and rates on maize nutrition and grain yield under no-tillage system in sandy soil. The experiment was conducted in a Typic Quartzipsamment, in the city of Cassilandia, State of Mato Grosso do Sul, Brazil. A completely randomized block design was used in a factorial array 3x4 with four replicates. Treatments consisted of three sources [urea, extruded urea with starch (Starea), and ammonium sulfonitrate with nitrification inhibitor of 3,4-dimethylpyrazole-phosphate (Entec (R) 26)] and four rates (0, 45, 90 and 180 kg ha(-1)) of nitrogen, applied in side-dressing when the plants presented four and six expanded leaves. The nitrogen source affected N, K, and S concentration in the leaf, but did not interfere in the components of production and maize grain yield. Nitrogen application like ammonium sulfonitrate promoted higher concentrations of N, K and S in the maize leaf in relation to the urea, especially in the larger rates studied. Side-dressing nitrogen fertilization increased the number of ears per plant, number of grains per ear and grain yield, grown under no-tillage system in sandy soil, independent of the used source.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water infiltration into soil is one of the basic factors for estimating irrigation intensity according to the plants' requirements; this is aimed at avoiding problems of surface run-off and degradation. The purpose of the present investigation was to determine the spatial variation of infiltration and its relationship to some physical properties of soil by means of geostatistical techniques in Typic Plinthaquult soils having average texture and flat relief. A 113 point mesh was designned, having a regular distance of 10 m between points, samples being taken from 0 to 0.20 meters depth. Sand, silt and clay content, bulk density, macroporosity, microporosity and total porosity were determined. Infiltration tests were carried out in the field by means of a 15 cm diameter ring. Descriptive statistics and geostatistics were used for analysing the data. Infiltration, silt and microporosity data did not fit a normal distribution curve. Infiltration had high variability, having an average 36.03 mm h(-1). Total porosity was 56.73%, this being the only property that did not show spatial dependency. The smallest ranges were observed for bulk density, macroporosity and microporosity, having values of less than 40 m. The smallest degrees of spatial dependence were observed for infiltration, silt and clay, evidence also being shown of the influence of silt and clay on infiltration rate. Contour maps were constructed; fitting them to the semivariogram models, together with studying the correlations, led to establishing relationships between the properties.
Resumo:
An experiment was conducted to study alfalfa (Medicago sativa L.) yields as affected by row spacings of 15, 20, 30 and 40 cm and plant densities originated from 10, 15, 20 and 30 kg/ha of seeds. The experiment was conducted on a Typic Eutrortox (Clay) in Bandeirantes, state of Paraná, Brazil. The experimetal design was a 4 × 4 factorial in randomized triplicated blocks. There was no significant effect of row spacings and plant populations on plant height and dry matter production. The 15 cm row spacing showed higher number of stems throughout the two years of the experiment. Up to the 6th cut the plant density of 30 kg/ha also lead to a higher number of stems/ha.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fungicide can enhance response of nitrogen fertilization on wheat crop, since the application of higher N rates can provide better conditions for the development of some diseases. The present study investigated the effects of different nitrogen doses and fungicide application in preventive character on the yield of two cultivars of wheat irrigated, in Savannah conditions. The experiment was conducted in Selvíria - MS, in a Distrophic Red Latosol (Typic Haplustox). Treatments were arranged in a randomized block design, in a 4x2x2 factorial scheme: four N rates (0, 60, 120 and 180 kg ha-1), topdressing at the early boot stage as urea, two wheat cultivars (IAC 24 and IAC 370), and with and without fungicide application (Tebuconazole and Triciclazol), with four replications. The cultivars IAC 24 and IAC 370 present similar grain yield. The increase of N doses influences the mass hectoliter negatively and the leaf N content and number of ears per m2 positively. The increment of N doses increase the grain yield up to dose of 116 kg ha -1 of N, regardless of cultivar and of the fungicide application in preventive character, due to non occurrence of diseases in the experiment.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.
Resumo:
This work aimed to evaluate the effects of liming and phosphate fertilizer for the production of sabiá (Mimosa caesalpiniifolia Benth.) seedlings without thorns under a greenhouse. Seedlings 10 days old were transferred to plastic bags containing 2.0 kg of psamitic Dystrophic Red-Yellow Latosol (Typic Haplustox) collected from 40 to 70 cm layer. The experiment was carried out in Teresina county, Piauí state, Brazil, from July to October of 2008. Two liming doses (with and without liming) and five phosphorus doses combined in a 2 x 5 factorial scheme were used. The experimental design used was the randomized blocks with four replications having each plot three seedlings. The calculated lime amount was enough to elevate the base saturation to 50 % and the phosphorus doses were: 0, 30, 60, 90, and 120 mg kg-1 of soil. One seedling per pot was cultivated and the pot dimension was 10 by 23 cm. The evaluated variables were height, diameter, leaves number, leaf area, and shoot and roots dry matter. For the studied soil condition, the liming is not necessary to produce 'Sabiá' seedlings. The application, on average, from 72 to 107 mg kg-1 of P promote, respectively, from 90 to100 % of maximum values of height, diameter, leaf area and shoots and roots biomass.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
We aimed to evaluate the effects of nitrogen rates in early growth, SPAD index, content and accumulation of nutrients in cedar seedlings. The experiment was carried out in a plastic greenhouse and the seedlings were grown in plastic pots filled with 20 dm-3of Rhodic Hapludox, arranged inrandomized blocks with four replications. Rates of 0, 40, 80, 120 and 160 mg dm-3N were tested. Fertilization up to 160 mg dm-3N promoted increases in SPAD index and early growth of plants, beyond greater absorption of N,P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn. Overall, lower N rates limited growth but not the absorption of nutrients by cedar plants. In leaves, the only nutrien taffected was the B which their content was reduced with increasing of N rate. Increased of nitrogen fertilization changed the Cu distributionin plants, since increased Cu content in roots and reduced their content in stem. Higher N rates promoted higher accumulation of all nutrients due to the increase of dry matter. Nitrogen fertilization changed the dynamic of nutrient absorption in cedar. With 160 mg dm-3N, the amount absorbed followed the order: N>S>Ca>K>Mg>P>Fe>Mn>B> Zn> Cu.