950 resultados para Turner, Bradley
Resumo:
There is increasing agreement that understanding complexity is important for project management because of difficulties associated with decision-making and goal attainment which appear to stem from complexity. However the current operational definitions of complex projects, based upon size and budget, have been challenged and questions have been raised about how complexity can be measured in a robust manner that takes account of structural, dynamic and interaction elements. Thematic analysis of data from 25 in-depth interviews of project managers involved with complex projects, together with an exploration of the literature reveals a wide range of factors that may contribute to project complexity. We argue that these factors contributing to project complexity may define in terms of dimensions, or source characteristics, which are in turn subject to a range of severity factors. In addition to investigating definitions and models of complexity from the literature and in the field, this study also explores the problematic issues of ‘measuring’ or assessing complexity. A research agenda is proposed to further the investigation of phenomena reported in this initial study.
Resumo:
Fatigue and overwork are problems experienced by numerous employees in many industry sectors. Focusing on improving work-life balance can frame the ‘problem’ of long work hours to resolve working time duration issues. Flexible work options through re-organising working time arrangements is key to developing an organisational response for delivering work-life balance and usually involves changing the internal structure of work time. This study examines the effect of compressed long weekly working hours and the consequent ‘long break’ on work-life balance. Using Spillover theory and Border theory, this research considers organisational and personal determinants of overwork and fatigue. It concludes compressed long work hours with a long break provide better work-life balance. Further, a long break allows gaining ‘personal time’ and overcoming fatigue.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.
Resumo:
Purpose To assess the repeatability and validity of lens densitometry derived from the Pentacam Scheimpflug imaging system. Setting Eye Clinic, Queensland University of Technology, Brisbane, Australia. Methods This prospective cross-sectional study evaluated 1 eye of subjects with or without cataract. Scheimpflug measurements and slitlamp and retroillumination photographs were taken through a dilated pupil. Lenses were graded with the Lens Opacities Classification System III. Intraobserver and interobserver reliability of 3 observers performing 3 repeated Scheimpflug lens densitometry measurements each was assessed. Three lens densitometry metrics were evaluated: linear, for which a line was drawn through the visual axis and a mean lens densitometry value given; peak, which is the point at which lens densitometry is greatest on the densitogram; 3-dimensional (3D), in which a fixed, circular 3.0 mm area of the lens is selected and a mean lens densitometry value given. Bland and Altman analysis of repeatability for multiple measures was applied; results were reported as the repeatability coefficient and relative repeatability (RR). Results Twenty eyes were evaluated. Repeatability was high. Overall, interobserver repeatability was marginally lower than intraobserver repeatability. The peak was the least reliable metric (RR 37.31%) and 3D, the most reliable (RR 5.88%). Intraobserver and interobserver lens densitometry values in the cataract group were slightly less repeatable than in the noncataract group. Conclusion The intraobserver and interobserver repeatability of Scheimpflug lens densitometry was high in eyes with cataract and eyes without cataract, which supports the use of automated lens density scoring using the Scheimpflug system evaluated in the study
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.
Resumo:
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
This volume is the second in a series that addresses change and development in the delivery of vocational and education programs in Queensland. A similar volume was published in 2007. Considerable change was foreshadowed for TAFE Queensland by the release of The Queensland Skill Plan (QSP) in 2006. This volume addresses implementation issues for the Actions identified in the QSP. The chapters focus on a breadth of issues that relate to the changing landscape for teaching and learning in TAFE Institutes. The incorporation of Information Communication Technologies (ICTs) and e-learning approaches into the delivery of training packages remain key foci for change, as was evident in the first volume of this series. The chapters also consider issues for some client groups in VET, as well as approaches to professional development to build the capabilities of staff for new teaching and learning environments. The chapter by Sandra Lawrence examines the professional development issues for staff across TAFE institutes in the implementation of the Learning Management System. Suzanne Walsh discusses the issues of new “learning spaces” and “Mode 2 learning in the re-development at Southbank Institute. The chapter by Angela Simpson focuses on VET in schools and school-to-work transition programs. Josie Drew, in her chapter, takes up the issues of embedding employability skills into the delivery of training packages through flexible delivery. The chapter by Colleen Hodgins focuses on the organisational challenges for Lead Institutes in relation to the professional development for TAFE educators in light of policy changes. Bradley Jones discusses the changing roles of libraries in VET contexts and their importance. He examines the adequacy of the VOCED database and reflects on the current nature, role, and practices of VET libraries. Finally, Piero Dametto discusses the pragmatics for TAFE educators in understanding the use of digital objects and learning objects within the LMS and LCMS systems that were presaged in the QSP. These papers were completed by the authors as a part of their postgraduate studies at QUT. The views reported are those of the authors and should not be attributed to the Queensland Department of Education, Training and the Arts. Donna Berthelsen Faculty of Education Queensland University of Technology
Resumo:
The effectiveness of a 10-week group music therapy program for marginalized parents and their children aged 0–5 years was examined. Musical activities were used to promote positive parent–child relationships and children’s behavioral, communicative and social development. Participants were 358 parents and children from families facing social disadvantage, young parents or parents of a child with a disability. Significant improvements were found for therapist-observed parent and child behaviors, and parent-reported irritable parenting, educational activities in the home, parent mental health and child communication and social play skills. This study provides evidence of the potential effectiveness of music therapy for early intervention.