818 resultados para Trauma in athletes
Resumo:
Objetivo: O objetivo deste estudo foi avaliar os efeitos de um programa de treino em seco na correção da postura dos ombros em protração em jovens nadadoras de natação sincronizada e natação pura. Metodologia: Este estudo segue uma metodologia quase-experimental. A amostra foi constituída com 26 nadadoras (dos 12 aos 17 anos),as quais avaliámos antes e após a realização de 8 semanas de treino de reposicionamento escapular em conjunto com um treino de fortalecimento da cintura escapular. Em cada avaliação as atletas foram avaliadas de ambos os lados, em três variáveis (distância acromial, bordo superior e bordo inferior). Resultados: Foi observada a diminuição da distância acromial no ombro dominante e não dominante, após as 8 semanas de intervenção no trabalho fora de água. Conclusão: Concluímos que o tipo de treino efetuado é uma boa opção para a correção da postura de protração dos ombros para ambas as disciplinas aquáticas; Effect of a dry training program at shoulder protraction posture in athletes Synchronized Swimming and Swimming Abstract: Objective: The objective of this study was to understand the effects of a dry training program in correcting the posture of protraction on shoulders in young swimmers of synchronized swimming and swimming. Methodology: The sample has 26 swimmers between 12 and 17 years old, who held two initial assessments to evaluate the effect of daily training and conducted a third evaluation after 8 weeks which applied a scapular repositioning training in conjunction with a training strengthening the shoulder girdle. In each evaluation, the athletes were measured on both sides, on three variables (acromial distance, upper kibler and lower kibler) through three different positions to avoid influencing the results. Results: We observed a decrease in the distance on the acromial dominant shoulder and not dominant, after 8 weeks of intervention in the work out of the water. Conclusion : We conclude that this type of workout is a good option for the correction of protraction posture of shoulders for both aquatic disciplines.
Resumo:
The objective of the present study was to measure the occurrence of orofacial and cerebral injuries in different sports and to survey the awareness of athletes and officials concerning the use of mouthguards during sport activities. Two hundred and sixty-seven professional athletes and 63 officials participating in soccer, handball, basketball and ice hockey were interviewed. The frequency of orofacial and cerebral trauma during sport practice was recorded and the reason for using and not using mouthguards was assessed. A great difference in orofacial and cerebral injuries was found when comparing the different kinds of sports and comparing athletes with or without mouthguards. 45% of the players had suffered injuries when not wearing mouthguards. Most injuries were found in ice hockey, (59%), whereas only 24% of the soccer players suffered injuries when not wearing mouthguards. Sixty-eight percentage of the players wearing mouthguards had never suffered any orofacial and cerebral injuries. Two hundred and twenty-four athletes (84%) did not use a mouthguard despite general acceptance by 150 athletes (56%). Although the awareness of mouthguards among officials was very high (59%), only 25% of them would support the funding of mouthguards and 5% would enforce regulations. Athletes as well as coaches should be informed about the high risk of oral injuries when performing contact sports. Doctors and dentists need to recommend a more intensive education of students in sports medicine and sports dentistry, and to increase their willingness to become a team dentist.
Resumo:
Existing trauma registries in Australia and New Zealand play an important role in monitoring the management of injured patients. Over the past decade, such monitoring has been translated into changes in clinical processes and practices. Monitoring and changes have been ad hoc, as there are currently no Australasian benchmarks for “optimal” injury management. A binational trauma registry is urgently needed to benchmark injury management to improve outcomes for injured patients.
Resumo:
INTRODUCTION In their target article, Yuri Hanin and Muza Hanina outlined a novel multidisciplinary approach to performance optimisation for sport psychologists called the Identification-Control-Correction (ICC) programme. According to the authors, this empirically-verified, psycho-pedagogical strategy is designed to improve the quality of coaching and consistency of performance in highly skilled athletes and involves a number of steps including: (i) identifying and increasing self-awareness of ‘optimal’ and ‘non-optimal’ movement patterns for individual athletes; (ii) learning to deliberately control the process of task execution; and iii), correcting habitual and random errors and managing radical changes of movement patterns. Although no specific examples were provided, the ICC programme has apparently been successful in enhancing the performance of Olympic-level athletes. In this commentary, we address what we consider to be some important issues arising from the target article. We specifically focus attention on the contentious topic of optimization in neurobiological movement systems, the role of constraints in shaping emergent movement patterns and the functional role of movement variability in producing stable performance outcomes. In our view, the target article and, indeed, the proposed ICC programme, would benefit from a dynamical systems theoretical backdrop rather than the cognitive scientific approach that appears to be advocated. Although Hanin and Hanina made reference to, and attempted to integrate, constructs typically associated with dynamical systems theoretical accounts of motor control and learning (e.g., Bernstein’s problem, movement variability, etc.), these ideas required more detailed elaboration, which we provide in this commentary.
Resumo:
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 × 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-γ coactivator-1α (ET ∼8.5-fold, ST ∼10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET ∼26-fold, ST ∼39-fold), vascular endothelial growth factor (VEGF; ET ∼4.5-fold, ST ∼4-fold), and muscle atrophy F-box protein (MAFbx) (ET ∼2-fold, ST ∼0.4-fold) mRNA increased in both groups, whereas MyoD (∼3-fold), myogenin (∼0.9-fold), and myostatin (∼2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (∼7-fold, P < 0.01) and MyoD (∼0.7-fold) increased, whereas MAFbx (∼0.7-fold) and myostatin (∼0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.
Resumo:
...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....
Resumo:
Purpose: Communication is integral to effective trauma care provision. This presentation will report on barriers to meaningful information transfer for multi-trauma patients upon discharge from the Emergency Department (ED) to the care areas of Intensive Care Unit, High Dependency Unit, and Perioperative Services. This is an ongoing study at one tertiary level hospital in Queensland. Method: This is a multi-phase, mixed method study. In Phase 1 data were collected about information transfer. This Phase was initially informed by a comprehensive literature review, then via focus groups, chart audit, staff survey and review of national and international trauma forms. Results: The barriers identified related to nursing handover, documented information, time inefficiency, patient complexity and stability and time of transfer. Specifically this included differences in staff expectations and variation in the nursing handover processes, no agreed minimum dataset of information handed over, missing, illegible or difficult to find information in documentation (both medical and nursing), low compliance with some forms used for documentation. Handover of these patients is complex with information coming from many sources, dealing with issues is more difficult for these patients when transferred out of hours. Conclusions and further directions: This study investigated the current communication processes and standards of information transfer to identify barriers and issues. The barriers identified were the structure used for documentation, processes used (e.g. handover), patient acuity and time. This information is informing the development, implementation and evaluation of strategies to ameliorate the issues identified.
Resumo:
Ultraendurance exercise training places large energy demands on athletes and causes a high turnover of vitamins through sweat losses, metabolism, and the musculoskeletal repair process. Ultraendurance athletes may not consume sufficient quantities or quality of food in their diet to meet these needs. Consequently, they may use oral vitamin and mineral supplements to maintain their health and performance. We assessed the vitamin and mineral intake of ultraendurance athletes in their regular diet, in addition to oral vitamin and mineral supplements. Thirty-seven ultraendurance triathletes (24 men and 13 women) completed a 7-day nutrition diary including a questionnaire to determine nutrition adequacy and supplement intake. Compared with dietary reference intakes for the general population, both male and female triathletes met or exceeded all except for vitamin D. In addition, female athletes consumed slightly less than the recommended daily intake for folate and potassium; however, the difference was trivial. Over 60% of the athletes reported using vitamin supplements, of which vitamin C (97.5%), vitamin E (78.3%), and multivitamins (52.2%) were the most commonly used supplements. Almost half (47.8%) the athletes who used supplements did so to prevent or reduce cold symptoms. Only 1 athlete used supplements on formal medical advice. Vitamin C and E supplementation was common in ultraendurance triathletes, despite no evidence of dietary deficiency in these 2 vitamins.
Resumo:
The 'open window' theory is characterised by short term suppression of the immune system following an acute bout of endurance exercise. This window of opportunity may allow for an increase in susceptibility to upper respiratory illness (URI). Many studies have indicated a decrease in immune function in response to exercise. However, many studies do not indicate changes in immune function past 2 hours after the completion of exercise, consequently failing to determine whether these immune cells numbers, or importantly their function, return to resting levels before the start of another bout of exercise. Ten male 'A' grade cyclists (age 24.2 +/- 5.3 years; body mass 73.8 +/- 6.5 kg; VO(2peak) 65.9 +/- 7.1 mL.kg(-1).min(-1)) exercised for two hours at 90% of their second ventilatory threshold. Blood samples were collected pre-, immediately post-, 2 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-exercise. Immune variables examined included total leukocyte counts, neutrophil function (oxidative burst and phagocytic function), lymphocyte subset counts (CD4(+), CD8(+), and CD16(+)/56(+)), natural killer cell activity (NKCA), and NK phenotypes (CD56(dim)CD16(+), and CD56(bright)CD16(-)). There was a significant increase in total lymphocyte numbers from pre-, to immediately post-exercise (p<0.01), followed by a significant decrease at 2 hours post-exercise (p<0.001). CD4(+) T-cell counts significantly increased from pre-exercise, to 4 hours post- (p<0.05), and 6 hours post-exercise (p<0.01). However, NK (CD16(+)/56(+)) cell numbers decreased significantly from pre-exercise to 4 h post-exercise (p<0.05), to 6 h post-exercise (p<0.05), and to 8 h post-exercise (p<0.01). In contrast, CD56(bright)CD16- NK cell counts significantly increased from pre-exercise to immediately post-exercise (p<0.01). Neutrophil oxidative burst activity did not significantly change in response to exercise, while neutrophil cell counts significantly increased from pre-exercise, to immediately post-exercise (p<0.05), and 2 hours post-exercise (p<0.01), and remained significantly above pre-exercise levels to 8 hours post-exercise (p<0.01). Neutrophil phagocytic function significantly decreased from 2 hours post-exercise, to 6 hours post- (p<0.05), and 24 hours post-exercise (p<0.05). Finally, eosinophil cell counts significantly increased from 2 hours post to 6 hours post- (p<0.05), and 8 hours post-exercise (p<0.05). This is the first study to show changes in immunological variables up to 8 hours post-exercise, including significant NK cell suppression, NK cell phenotype changes, a significant increase in total lymphocyte counts, and a significant increase in eosinophil cell counts all at 8 hours post-exercise. Suppression of total lymphocyte counts, NK cell counts and neutrophil phagocytic function following exercise may be important in the increased rate of URI in response to regular intense endurance training.