963 resultados para Transformation induced plasticity steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the transients of buckling in drying colloidal suspensions is pivotal for producing new functional microstructures with tunable morphologies. Here, we report first observations and elucidate the buckling instability induced morphological transition (sphere to ring structure) in an acoustically levitated, heated nanosuspension droplet using dynamic energy balance. Droplet deformation featuring the formation of symmetric cavities is initiated by capillary pressure that is two to three orders of magnitude greater than the acoustic radiation pressure, thus indicating that the standing pressure field has no influence on the buckling front kinetics. With an increase in heat flux, the growth rate of surface cavities and their post-buckled volume increase while the buckling time period reduces, thereby altering the buckling pathway and resulting in distinct precipitate structures. However, irrespective of the heating rate, the volumetric droplet deformation exhibits a linear time dependence and the droplet vaporization is observed to deviate from the classical D-2-law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report ductile bulk metallic glasses based on martensitic alloys. The slowly cooled specimens contain a mixture of parent 'austenite' and martensite phase. The slightly faster cooled bulk metallic glasses with 2-5 nm sized 'austenite'-like crystalline cluster reveal high strength and large ductility (16%). Shear bands propagate in a slither mode in this spatially inhomogeneous glassy structure and undergo considerable 'thickening' from 5-25 nm. A 'stress induced displacive transformation' is proposed to be responsible for both plasticity and work-hardening-like behavior of these 'M-Glasses'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laser-discrete quenched steel (LDQS) substrate/as-deposited chromium (top high-contraction (HC) and underlying low-contraction (LC) chromium) system was investigated by dissolving coatings in order to reveal the mechanism that the service life of the coated parts is largely improved using the hybrid technique of laser pre-quenching plus chromium post-depositing. It was found that the surface characteristics of the substrate, LC and HC chromium layer can be simultaneously revealed owing to the dissolution edge effect of chromium coatings. Moreover, the periodical gradient morphologies of the LDQS substrate are clearly shown: the surfaces of laser transformation-hardened regions are rather smooth; a lot of fine micro-holes exist in the transition zones; there are many micro-dimples in the original substrate. Furthermore, the novel method of dissolving coatings with sharp interfaces may be used to reveal the structural features of a substrate/coating system, explore the effect of the substrate on the initial microstructure and morphologies of coatings, and check the quality of the coated-parts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the quantitative prediction of the volume fraction of martensitic transformation in a austenitic steel that undergoes impact with high strain rate. The coupling relations between strain, stress, strain rate, transformation rate and transformed fraction were derived from the OTC model and modified Bodner-Partom equations, where the impact process was considered as an adiabatic and no entropy-increased process (pressure less than or equal to 20GPa). The one-dimensional results were found to model and predict various experimental results obtained on 304 stainless steel under impact with high strain rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation microstructure of face-centered cubic cobalt subjected to surface mechanical attrition treatment was studied as a function of strain levels. Strain-induced gamma --> epsilon transformation and twinning deformation were evidenced by transmission electron microscopy and were found to progress continuously in ultrafine and nanocrystalline grains as the strain increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural evolution during surface mechanical attrition treatment of cobalt (a mixture of hexagonal close packed (hep) and face-centered cubic (fcc) phases) was investigated. In order to reveal the mechanism of grain refinement and strain accommodation. The microstructure was systematically characterized by both cross-sectional and planar-view transmission electron microscopy. In the hcp phase, the process of grain refinement. Accompanied by an increase in strain imposed in the surface layer. Involved: (1) the onset of 110 111 deformation twinning, (2) the operation of (1 120) 110 1 0} prismatic and (1 120) (000 1) basal slip, leading to the formation of low-angle dislocation boundaries, and (3) the successive subdivision of grains to a finer and finer scale. Ressulting in the formation of highly misoriented nanocrystalline grains. Moreover. The formation of nanocrystalliies at the grain boundary and triple junction was also observed to occur concurrently with straining. By contrast. The fec phase accommodated strain in a sequence as follows: (1) slip of dislocations by forming intersecting planar arrays of dislocations, (2) {1 1 1} deformation twinning, and (3) the gamma(fcc) --> epsilon(hcp) martensitic phase transformation. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization occurring in the hep phase and the gamma --> E: martensitic transformation in the fcc phase as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel pulsed laser surface processing technology is introduced, which can make use of the spatial and temporal profile of laser pulse to obtain ideal hardening parameters. The intensity distribution of laser pulse is spatially and temporally controlled by using laser shape transformation technology. A 3D numerical model including multi-phase transformations is established to explore material microstructure evolution induced by temperature field evolution. The influences of laser spatial-temporal profiles on hardening parameters are investigated. Different from the continuous laser processing technology, results indicate that spatial and temporal profiles are important factors in determining processing quality during pulsed laser processing method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.