969 resultados para Transcriptional blockage
Resumo:
The concept of multispecific antibodies is of high therapeutic interest but has failed to produce pharmaceutical products due to the poor biophysical properties of such molecules. Here, we propose an alternative and simple way to generate bispecific binding molecules using designed ankyrin repeat proteins (DARPins). For this purpose, monovalent DARPins with different epitope specificities were selected against the alpha chain of the high-affinity receptor for human immunoglobulin E (IgE) (FcepsilonRIalpha). Two of the isolated binders interfering with IgE binding to the receptor were joined to each other or to themselves via a flexible protein linker. The resulting bivalent and bispecific DARPins were tested for their ability to prevent allergen-induced cell degranulation using rat basophilic leukemia cells stably transfected with human FcepsilonRIalpha. The bispecific DARPin construct was the most potent one, efficiently blocking the IgE-FcepsilonRI interaction and preventing the release of proinflammatory mediators. Noteworthy, the multivalent and multispecific DARPin construct did not show any alteration of the beneficial biophysical properties of the monovalent parental DARPins. Hence, bispecific DARPins may be used to generate receptor antagonists simultaneously targeting different epitopes on the same molecule. Moreover, they easily overcome the limiting immunoglobulin binding paradigm (one binding molecule=one epitope) and thereby represent an alternative to monoclonal antibodies in cases where the immunoglobulin scaffold is unsuitable.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.
Resumo:
The FsrABC system of Enterococcus faecalis controls the expression of gelatinase and a serine protease via a quorum-sensing mechanism, and recent studies suggest that the Fsr system may also regulate other genes important for virulence. To investigate the possibility that Fsr influences the expression of additional genes, we used transcriptional profiling, with microarrays based on the E. faecalis strain V583 sequence, to compare the E. faecalis strain OG1RF with its isogenic mutant, TX5266, an fsrB deletion mutant. We found that the presence of an intact fsrB influences expression of numerous genes throughout the growth phases tested, namely, late log to early stationary phase. In addition, the Fsr regulon is independent of the activity of the proteases, GelE and SprE, whose expression was confirmed to be activated at all three time points tested. While expression of some genes (i.e., ef1097 and ef0750 to -757, encoding hypothetical proteins) was activated in late log phase in OG1RF versus the fsrB deletion mutant, expression of ef1617 to -1634 (eut-pdu orthologues) was highly repressed by the presence of an intact Fsr at entry into stationary phase. This is the first time that Fsr has been characterized as a negative regulator. The newly recognized Fsr-regulated targets include other factors, besides gelatinase, described as important for biofilms (BopD), and genes predicted to encode the surface proteins EF0750 to -0757 and EF1097, along with proteins implicated in several metabolic pathways, indicating that the FsrABC system may be an important regulator in strain OG1RF, with both positive and negative effects.
Resumo:
The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.
Resumo:
Development of transcriptional pulsing approaches using the c-fos and Tet-off promoter systems greatly facilitated studies of mRNA turnover in mammalian cells. However, optimal protocols for these approaches vary for different cell types and/or physiological conditions, limiting their widespread application. In this study, we have further optimized transcriptional pulsing systems for different cell lines and developed new protocols to facilitate investigation of various aspects of mRNA turnover. We apply the Tet-off transcriptional pulsing strategy to investigate ARE-mediated mRNA decay in human erythroleukemic K562 cells arrested at various phases of the cell cycle by pharmacological inhibitors. This application facilitates studies of the role of mRNA stability in control of cell-cycle dependent gene expression. To advance the investigation of factors involved in mRNA turnover and its regulation, we have also incorporated recently developed transfection and siRNA reagents into the transcriptional pulsing approach. Using these protocols, siRNA and DNA plasmids can be effectively cotransfected into mouse NIH3T3 cells to obtain high knockdown efficiency. Moreover, we have established a tTA-harboring stable line using human bronchial epithelial BEAS-2B cells and applied the transcriptional pulsing approach to monitor mRNA deadenylation and decay kinetics in this cell system. This broadens the application of the transcriptional pulsing system to investigate the regulation of mRNA turnover related to allergic inflammation. Critical factors that need to be considered when employing these approaches are characterized and discussed.
MOLECULAR MECHANISMS UNDERLYING THE TRANSCRIPTIONAL REGULATION OF T HELPER 17 AND REGULATORY T CELLS
Resumo:
CD4+ T helper (Th) lymphocytes are vital for integrating immune responses by orchestrating the function of other immune cell types. Naïve Th cells can differentiate into different effector subsets that are characterized by their cytokine profile and immune regulatory functions. These subsets include Th1, Th2, Th17, natural and inducible regulatory T cells (nTreg and iTreg respectively), among others. We focused our investigation on two Th lineages, Th17 and regulatory T cells, with opposing functions in the immune system. These subsets have been suggested to be reciprocally regulated since they both require TGF-b for their development. We investigated the role of the Treg-associated master transcription factor Foxp3, and found that Foxp3 inhibits Th17 cell generation by preventing the transcriptional activity of the two main Th17-specific transcription factors, nuclear orphan receptors RORa and RORgt. At the molecular level, we identified two different functional domains in Foxp3 required for such inhibition: the LQALL sequence in exon 2 and the TIP60/HDAC7 binding domain. These domains could be crucial to either prevent the association of the nuclear receptors to coactivators or to recruit histone deacetylases to RORa- or RORgt-target genes. Since TGF-b is a common cytokine required for the commitment towards both Th lineages, we determined the role of the TGF-b-dependent signaling pathway in the generation of each subset. By using mice with deficiencies in signaling molecules downstream of TGF-b, we found that while Smad2, Smad3 and Smad4 are required for the generation of iTreg cells, only Smad2 is indispensable for the induction of IL-17-producing cells, suggesting that TGF-b induces these T helper lineages through differential signaling pathways. Thus, our findings describe novel transcriptional regulatory mechanisms that control the generation of two T helper lineages with opposing functions. These findings could provide novel therapeutic targets to treat diseases where the balance of these T cells is dysregulated, such as in autoimmunity, chronic infectious diseases and cancer.
Resumo:
Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.
Resumo:
The invariant chain associated with the major histocompatibility complex (MHC) class II molecules is a non-polymorphic glycoprotein implicated in antigen processing and class II molecule intracellular transport. Class II molecules and invariant chain (In) are expressed primarily by B lymphocytes and antigen-presenting cells such as macrophages and can be induced by interferon gamma (IFN-$\gamma$) in a variety of cell types such as endothelial cells, fibroblasts, and astrocytes. In this study the cis-acting sequences involved in the constitutive, tissue-specific, and IFN-$\gamma$ induced expression of the human In gene were investigated and nuclear proteins which specifically bound these sequences were identified.^ To define promoter sequences involved in the regulation of the human In gene, 790 bp 5$\sp\prime$ to the initiation of transcription were subcloned upstream of the gene encoding chloramphenicol acetyl transferase (CAT). Transfection of this construct into In expressing and non-expressing cell lines demonstrated that this 790 bp In promoter sequence conferred tissue specificity to the CAT gene. Deletion mutants were created in the promoter to identify sequences important for transcription. Three regulatory regions were identified $-$396 to $-$241, $-$241 to $-$216, and $-$216 to $-$165 bp 5$\sp\prime$ to the cap site. Transfection into a human glioblastoma cell line, U-373 MG, and treatment with IFN-$\gamma$, demonstrated that this 5$\sp\prime$ region is responsive to IFN-$\gamma$. An IFN-$\gamma$ response element was sublocalized to the region $-$120 to $-$61 bp. This region contains homology to the interferon-stimulated response element (ISRE) identified in other IFN responsive genes. IFN-$\gamma$ induces a sequence-specific DNA binding factor which binds to an oligonucleotide corresponding to $-$107 to $-$79 bp of the In promoter. This factor also binds to an oligonucleotide corresponding to $-$91 to $-$62 of the interferon-$\beta$ gene promoter, suggesting this factor may be member of the IRF-1/ISGF2, IRF-2, ICSBP family of ISRE binding proteins. A transcriptional enhancer was identified in the first intron of the In gene. This element, located in a 2.6 kb BamHI/PstI fragment, enhances the IFN-$\gamma$ response of the promoter in U-373 MG. The majority of the In enhancer activity was sublocalized to a 550 bp region $\sim$1.6 kb downstream of the In transcriptional start site. ^
Resumo:
The expression of the chicken fast skeletal myosin alkali light chain (MLC) 3f is subject to complex patterns of control by developmental and physiologic signals. Regulation over MLC3f gene expression is thought to be exerted primarily at the transcriptional level. The purpose of this dissertation was to identify cis-acting elements on the 5$\sp\prime$ flanking region of chicken MLC3f gene that are important for transcriptional regulation. The results show that the 5$\sp\prime$ flanking region of MLC3f gene contains multiple cis-acting elements. The nucleotide sequence of these elements demonstrates a high degree of conservation between different species and are also found in the 5$\sp\prime$ flanking regions of many muscle protein genes. The first regulatory region is located between $-$185 and $-$150 bp from the transcription start site and contains an AT-rich element. Linker scanner analyses have revealed that this element has a positive effect on transcription of the MLC3f promoter. Furthermore, when linked to a heterologous viral promoter, it can enhance reporter gene expression in a muscle-specific manner, independent of distance or orientation.^ The second regulatory region is located between $-$96 and $-$64 from the transcription start site. Sequences downstream of $-$96 have the capacity to drive muscle-specific reporter gene expression, although the region between $-$96 and $-$64 has no intrinsic enhancer-like activity. Linker scanner analyses have identified a GC-rich motif that required efficient transcription of the MLC3f promoter. Mutations to this region of DNA results in diminished capacity to drive reporter gene expression and is correlated with disruption of the ability to bind sequence-specific transcription factors. These sequence-specific DNA-binding proteins were detected in both muscle and non-muscle extracts. The results suggest that the mere presence or absence of transcription factors cannot be solely responsible for regulation of MLC3f expression and that tissue-specific expression may arise from complex interactions with muscle-specific, as well as more ubiquitous transcription factors with multiple regulatory elements on the gene. ^