940 resultados para Toxicidade do alumínio
Resumo:
The activation of aluminum surface has the most various purposes as for example the search for the surface activation mechanism and the corrosion products by mercury ions. The objective of this work is to study the reactivity of the surface of aluminum metal when activated by mercury ions (Hg2+), with the consequent formation of an Al-Hg amalgam. Results demonstrate that the kinetics of the reaction, by measuring the mass change with time of the corrosion product formed between Al and Hg, and analysis by infrared spectroscopy (IR) that the product of the reaction between the amalgam, located on the surface, and the atmospheric oxygen is Al2O3 (aluminum hydroxide). The results also indicate that the kinetics of the reaction between the amalgam (Hg-Al) and atmospheric oxygen is of first order and reach a region where there is no more formation of product
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
TProducts must follow specifications in order to attend demands requested. In terms of rolled aluminum, one of the most significant items for customers is coil thickness. This is because only a tiny variation in thickness might cause a serious problem on customer's manufacturing line. Thereby, this research aims to analyze through design of experiments which factors and how they affect the thickness of aluminum coils. The response variable of the experiment is the thickness of aluminum coil, tensile strenght and yield strenght are the factors of the experiment and trimmers machines were considered as blocking. Data were obtained through tensile tests. The result of the experiment states that, according to the analysis of variance (ANOVA), while there is significant difference between the two levels of tensile strength, there is not any difference between the two levels of yield strength and trimmers machines. The thickness of the aluminum coils with high values of tensile strength tends to be thicker when compared with low values of tensile strength
Resumo:
This paper purpose is to analyze one of the main problems faced by cold rolling industry of the current time, the mechanical vibration. Factors such as strips with high velocity in order to increase the productivity and thickness becoming thinner and thinner cause the vibrations to be present at all times during rolling. These market requirements also drive the industry for technology development and thus bring the challenges that the operation of a new modern equipment and more powerful. The initial purpose is to analyze the forces that cause vibration in a rolling mill type four high with two stands, where is desirable to identify the origins of these vibrational forces to make possible dismiss them or at least control its intensity, in order to prevent damage in the rolling mill and ensure product quality to the customer. For it, will be used instruments to record and store the vibrations that occur during the lamination process. With this data will be able to analyze the characteristics of the vibrations and act at your elimination. At the end of the work is expected to demonstrate how important the critical view of the engineer in the analysis of graphics combined with the calculations of the natural vibration frequency and engagement of key parts of the laminator. With these two tools at hand, will be possible to increase the productivity of the rolling mill and act preventively in maintenance, thereby reducing your downtime and increasing its performance and efficiency
Resumo:
The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes
Efeitos da luz visível associada à ftalocianina de cloro-alumínio na inativação da Borrelia anserina
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
TProducts must follow specifications in order to attend demands requested. In terms of rolled aluminum, one of the most significant items for customers is coil thickness. This is because only a tiny variation in thickness might cause a serious problem on customer's manufacturing line. Thereby, this research aims to analyze through design of experiments which factors and how they affect the thickness of aluminum coils. The response variable of the experiment is the thickness of aluminum coil, tensile strenght and yield strenght are the factors of the experiment and trimmers machines were considered as blocking. Data were obtained through tensile tests. The result of the experiment states that, according to the analysis of variance (ANOVA), while there is significant difference between the two levels of tensile strength, there is not any difference between the two levels of yield strength and trimmers machines. The thickness of the aluminum coils with high values of tensile strength tends to be thicker when compared with low values of tensile strength
Resumo:
This paper purpose is to analyze one of the main problems faced by cold rolling industry of the current time, the mechanical vibration. Factors such as strips with high velocity in order to increase the productivity and thickness becoming thinner and thinner cause the vibrations to be present at all times during rolling. These market requirements also drive the industry for technology development and thus bring the challenges that the operation of a new modern equipment and more powerful. The initial purpose is to analyze the forces that cause vibration in a rolling mill type four high with two stands, where is desirable to identify the origins of these vibrational forces to make possible dismiss them or at least control its intensity, in order to prevent damage in the rolling mill and ensure product quality to the customer. For it, will be used instruments to record and store the vibrations that occur during the lamination process. With this data will be able to analyze the characteristics of the vibrations and act at your elimination. At the end of the work is expected to demonstrate how important the critical view of the engineer in the analysis of graphics combined with the calculations of the natural vibration frequency and engagement of key parts of the laminator. With these two tools at hand, will be possible to increase the productivity of the rolling mill and act preventively in maintenance, thereby reducing your downtime and increasing its performance and efficiency
Resumo:
The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm
Resumo:
Machining processes are one of the most important manufacturing processes in the modern world. In these processes, there are many elements which will influence in the final result of the machined part. Among them, the tools are the principal factor of the rising cost, because its global influence on the process. In aeronautical industries, this can be more evidenced due the need to machining several alloys, between them, aluminum alloys. These alloys have to demonstrate a specific surface finishing to be used in aircraft's fuselage. This kind of industry is one of the segments which is still rising in Brazil, and they are looking viable alternatives in the manufacturing processes of materials, due the need to produce more and more parts and equipment, with costs increasingly reduced. The purpose of this project is the development of a ceramic with differentiated properties. The ceramics were developed using a pre-sintering at 1200 °C, with posterior sintering at 1600°C, and subjected to dry turning process on aluminum alloy 6005. The characterizations showed that ceramics presented with toughness on the center of 1700 MPa and on the surface of 1950 MPa, density 98,5 ±0,14. g/cm³. Ceramics were grinded and faceted, according to ISO standard 1832, and subjected to turning tests in a ROMI lathe brand, model GL240M, using cutting speeds of 500, 800 and 1000 m/min with different feed rates. The machining results showed low occurrence of flank wear to all cutting speeds, and better surface finishing average values of Ra = 0,4935 μm and Rt = 8,112 μm. In general, it could be seen that the tool presents important potential to machining 6005 alloy, and that the use of correct parameters can decrease and/or eliminate subsequent processes, providing important reductions in costs related to the machining processes