973 resultados para Toxic agent (Determination) Toxicology
Resumo:
Medical literature regularly reports on accidental poisoning in children after aspiration of combustibles such as lamp oils which usually contain hydrocarbons or rape methyl esters (RMEs). We aimed to analyze the toxic potential of alkanes and different combustible classes in vitro with regard to biologic responses and mechanisms mediating toxicity. Two different in vitro models were used, i.e. (i) a captive bubble surfactometer (CBS) to assess direct influence of combustibles on biophysical properties of surfactant film and (ii) cell cultures (BEAS-2B and R3/1 cells, primary macrophages, re-differentiated epithelia) closely mimicking the inner lung surface. Biological endpoints included cell viability, cytotoxicity and inflammatory mediator release. CBS measurements demonstrate that combustibles affect film dynamics, i.e. the surface tension/area characteristics during compression and expansion, in a dose and molecular chain length dependent manner. Cell culture results confirm the dose dependent toxicity. Generally, cytotoxicity and cytokine release are higher in short-chained alkanes and hydrocarbon-based combustibles than in long-chained substances, e.g. highest inducible cytotoxicity in BEAS-2B was for hexane 84.6%, decane 74% and hexadecane 30.8%. Effects of RME-based combustibles differed between the cell models. Our results confirm data from animal experiments and give new insights into the mechanisms underlying the adverse health effects observed.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.
Resumo:
The monoclonal antibody anti-CD66 labeled with (99m)Tc is widely used as Scintimun((R)) granulocyte for bone marrow immunoscintigraphy. Further, recently performed clinical radioimmunotherapy studies with [(90)Y]Y-anti-CD66 proved to be suitable for the treatment of hematologic malignancies. Before radioimmunotherapy with [(90)Y]Y-anti-CD66, dosimetric estimations are required to minimize radiotoxicity and determine individual applicable activities. Planar imaging, using gamma-emitting radionuclides, is conventionally carried out to estimate the absorbed organ doses. In contrast, immuno-PET (positron emission tomography) enables the quantification of anti-CD66 accumulation and provides better spatial and temporal resolution. Therefore, in this study, a semiautomated radiosynthesis of [(18)F] F-anti-CD66 was developed, using the (18)F-acylation agent, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). As a proof of concept, an intraindividual comparison between PET and conventional scintigraphy, using (18)F- and (99m)Tc-labeled anti-CD66 in 1 patient with high-risk leukemia, is presented. Both labeled antibodies displayed a similar distribution pattern with high preferential uptake in bone marrow. Urinary excretion of [(18)F] F-anti-CD66 was increased and bone marrow uptake reduced, in comparison to [(99m)Tc]Tc-anti-CD66. Nevertheless, PET-based dosimetry with [(18)F] F-anti-CD66 could provide additional information to support conventional scintigraphy. Moreover, [(18)F]F-anti-CD66 is ideally suited for bone marrow imaging using PET.
Resumo:
ABSTRACT: BACKGROUND: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. RESULTS: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. CONCLUSION: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.
Resumo:
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. RESULTS Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. CONCLUSIONS We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Resumo:
Maleic acid (MA) is a common component of descaling products and is widely used in daily life. Accidental ingestion in relevant amounts does not play a major role in human beings; however, it seems to be highly toxic for dogs. It has been commonly used experimentally to induce Fanconi syndrome in dogs or small rodents. Two dogs were presented for acute kidney injury (AKI) after accidental ingestion of a descaling agent containing MA at an estimated amount of 70 mg/kg each. The third dog involved was euthanased by the referring veterinarian, and postmortem pathological analysis revealed severe acute tubular necrosis consistent with toxic nephropathy. The other dogs received symptomatic therapy for AKI including treatment with haemodialysis and showed complete normalisation of serum creatinine at a follow-up after five months. Renal damage can be very severe, but seems to be at least partially reversible and an attempt to treatment is warranted.
Resumo:
Trout provide a relatively easy source of hepatocytes that can be cryopreserved and used for a range of applications including toxicity testing and determination of intrinsic clearance. Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess metabolic stability of xenobiotics in fish by means of a substrate depletion approach. Variations on these methods, troubleshooting tips, and directions for use of extrapolation factors to express results in terms of in vivo intrinsic clearance are included. These protocols have been developed for rainbow trout, but can be adapted to other fish species with appropriate considerations.
Resumo:
Hydrazine $\rm (N\sb2H\sb4),$ an important liquid propellant and derivative chemical for pharmaceuticals and pesticides, produces coma and convulsions sometimes resulting in death. Hyperammonia was found in rabbits exposed to 18 mg/Kg of hydrazine. Results of Part One of this study of rabbits emphasize the importance of acute ammonia toxicity during the first three hours following exposure to hydrazine. At no time during this post exposure period did a significant reduction of hydrazine to ammonia occur. Therefore, the elevated blood ammonia was apparently secondary to the effects of hydrazine on metabolic pathways. Further, the results support the theory of competitive inhibition of ammonia by hydrazine and emphasize the need to monitor plasma ammonia following toxic exposure to hydrazine.^ In Part Two, urea, ammonia, CO$\sb2,$ pH, glucose, sodium, potassium, chloride and creatinine were measured for up to 4 hours following injection of 18 mg/Kg of hydrazine in each of two groups of five rabbits. One group received normal saline and the other group received 5% dextrose and water/normal saline. Hyperammonemia, minimal metabolic acidosis and hyperglycemia without increased urea were found in the rabbits receiving normal saline intravenous infusion and hydrazine injection. Hence, hypoglycemia does not appear to play a role in the development of hyperammonemia. A significant difference in the elevated ammonia levels between the two groups receiving dextrose and water/normal saline and normal saline at 1 hour occurred. There was no significant difference in the elevated ammonia levels seen between the two groups receiving dextrose and water/normal saline and normal saline at 2.5 and 4 hours. Thus at 1 hour the group receiving dextrose was able to utilize excess glucose to detoxify ammonia, while at 2.5 and 4 hours there was no significant difference in the two groups' ability to detoxify ammonia.^ Findings support the theory that hydrazine inhibits the formation of urea resulting in hyperammonemia. Results suggest that hydrazine at 18 mg/Kg, a known hypoglycemic agent, causes serious hyperammonemia without increasing urea production during hyperglycemia. These experiments support a unified theory for the toxic mechanism of action of hydrazine, i.e., the intermediary metabolic effects of hydrazine are brought about by the formation of hydrazones which encumber ATP synthesis and vitamin B$\sb6$ enzymatic reactions. ^
Resumo:
An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^