889 resultados para Topographie adaptive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block-structured adaptive mesh refinement (AMR) technique has been used to obtain numerical solutions for many scientific applications. Some block-structured AMR approaches have focused on forming patches of non-uniform sizes where the size of a patch can be tuned to the geometry of a region of interest. In this paper, we develop strategies for adaptive execution of block-structured AMR applications on GPUs, for hyperbolic directionally split solvers. While effective hybrid execution strategies exist for applications with uniform patches, our work considers efficient execution of non-uniform patches with different workloads. Our techniques include bin-packing work units to load balance GPU computations, adaptive asynchronism between CPU and GPU executions using a knapsack formulation, and scheduling communications for multi-GPU executions. Our experiments with synthetic and real data, for single-GPU and multi-GPU executions, on Tesla S1070 and Fermi C2070 clusters, show that our strategies result in up to a 3.23 speedup in performance over existing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. At such low MTBFs, employing periodic checkpointing alone will result in low efficiency because of the high number of application failures resulting in large amount of lost work due to rollbacks. In such scenarios, it is highly necessary to have proactive fault tolerance mechanisms that can help avoid significant number of failures. In this work, we have developed a mechanism for proactive fault tolerance using partial replication of a set of application processes. Our fault tolerance framework adaptively changes the set of replicated processes periodically based on failure predictions to avoid failures. We have developed an MPI prototype implementation, PAREP-MPI that allows changing the replica set. We have shown that our strategy involving adaptive process replication significantly outperforms existing mechanisms providing up to 20 percent improvement in application efficiency even for exascale systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling the spatial variability that exists in pavement systems can be conveniently represented by means of random fields; in this study, a probabilistic analysis that considers the spatial variability, including the anisotropic nature of the pavement layer properties, is presented. The integration of the spatially varying log-normal random fields into a linear-elastic finite difference analysis has been achieved through the expansion optimal linear estimation method. For the estimation of the critical pavement responses, metamodels based on polynomial chaos expansion (PCE) are developed to replace the computationally expensive finite-difference model. The sparse polynomial chaos expansion based on an adaptive regression-based algorithm, and enhanced by the combined use of the global sensitivity analysis (GSA) is used, with significant savings in computational effort. The effect of anisotropy in each layer on the pavement responses was studied separately, and an effort is made to identify the pavement layer wherein the introduction of anisotropic characteristics results in the most significant impact on the critical strains. It is observed that the anisotropy in the base layer has a significant but diverse effect on both critical strains. While the compressive strain tends to be considerably higher than that observed for the isotropic section, the tensile strains show a decrease in the mean value with the introduction of base-layer anisotropy. Furthermore, asphalt-layer anisotropy also tends to decrease the critical tensile strain while having little effect on the critical compressive strain. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that noise and detection error can affect the performances of an adaptive optics (AO) system. Effects of noise and detection error on the phase compensation effectiveness in a dynamic AO system are investigated by means of a pure numerical simulation in this paper. A theoretical model for numerically simulating effects of noise and detection error in a static AO system and a corresponding computer program were presented in a previous article. A numerical simulation of effects of noise and detection error is combined with our previous numeral simulation of a dynamic AO system in this paper and a corresponding computer program has been compiled. Effects of detection error, readout noise and photon noise are included and investigated by a numerical simulation for finding the preferred working conditions and the best performances in a practical dynamic AO system. An approximate model is presented as well. Under many practical conditions such approximate model is a good alternative to the more accurate one. A simple algorithm which can be used for reducing the effect of noise is presented as well. When signal to noise ratio is very low, such method can be used to improve the performances of a dynamic AO system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern technology has allowed real-time data collection in a variety of domains, ranging from environmental monitoring to healthcare. Consequently, there is a growing need for algorithms capable of performing inferential tasks in an online manner, continuously revising their estimates to reflect the current status of the underlying process. In particular, we are interested in constructing online and temporally adaptive classifiers capable of handling the possibly drifting decision boundaries arising in streaming environments. We first make a quadratic approximation to the log-likelihood that yields a recursive algorithm for fitting logistic regression online. We then suggest a novel way of equipping this framework with self-tuning forgetting factors. The resulting scheme is capable of tracking changes in the underlying probability distribution, adapting the decision boundary appropriately and hence maintaining high classification accuracy in dynamic or unstable environments. We demonstrate the scheme's effectiveness in both real and simulated streaming environments. © Springer-Verlag 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage evolution of heterogeneous brittle media involves a wide range of length scales. The coupling between these length scales underlies the mechanism of damage evolution and rupture. However, few of previous numerical algorithms consider the effects of the trans-scale coupling effectively. In this paper, an adaptive mesh refinement FEM algorithm is developed to simulate this trans-scale coupling. The adaptive serendipity element is implemented in this algorithm, and several special discontinuous base functions are created to avoid the incompatible displacement between the elements. Both the benchmark and a typical numerical example under quasi-static loading are given to justify the effectiveness of this model. The numerical results reproduce a series of characteristics of damage and rupture in heterogeneous brittle media.