924 resultados para Tire Wear.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of three commercial weld-hardfacing alloys to erosive wear has been studied. These were high chromium white cast irons, deposited by an open-arc welding process, widely used in the mineral processing and steelmaking industries for wear protection. Erosion tests were carried out with quartz sand, silicon carbide grit and blast furnace sinter of two different sizes, at a velocity of 40 m s-1 and at impact angles in the range 20° to 90°. A monolithic white cast iron and mild steel were also tested for comparison. Little differences were found in the wear rates when silica sand or silicon carbide grit was used as the erodent. Significant differences were found, however, in the rankings of the materials. Susceptibility to fracture of the carbide particles in the white cast irons played an important role in the behaviour of the white cast irons. Sinter particles were unable to cause gross fracture of the carbides and so those materials with a high volume fraction of carbides showed the greatest resistance to erosive wear. Silica and silicon carbide were capable of causing fracture of the primary carbides. Concentration of plastic strain in the matrix then led to a high wear rate for the matrix. At normal impact with silica or silicon carbide erodents mild steel showed a greater resistance to erosive wear than these alloys. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously published expressions for the wear volume in the micro-scale abrasion test for curved specimen surfaces (K.L. Rutherford and I.M. Hutchings, Tribology Letters 2 (1996) 1-11) were based upon erroneous assumptions about the wear-scar geometry. Accurate volumes have now been computed, and the errors in the use of the original analytical equations are shown to be negligibly small (<0.5% error) for all practical cases. © J.C. Baltzer AG, Science Publishers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses road damage caused by heavy commercial vehicles. Chapter 1 presents some important terminology and a brief historical review of road construction and vehicle-road interaction, from ancient times to the present day. The main types of vehicle-generated road damage, and the methods that are used by pavement engineers to analyze them are discussed in Chapter 2. Attention is also given to the main features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Chapter 3 reviews the effects on road damage of vehicle features which can be studied without consideration of vehicle dynamics. These include gross vehicle weight, axle and tire configurations, tire contact conditions and static load sharing in axle group suspensions. The dynamic tire forces generated by heavy vehicles are examined in Chapter 4. The discussion includes their simulation and measurement, their principal characteristics, the effects of tires and suspension design on dynamic forces, and the potential benefits of using advanced suspensions for minimizing dynamic tire forces. Chapter 5 discusses methods for estimating the effects of dynamic tire forces on road damage. The two main approaches are either to examine the statistics of the forces themselves; or to calculate the response of a pavement model to the forces, and to calculate the resulting wear using a material damage model. The issues involved in assessing vehicles for 'road friendliness' are discussed in Chapter 6. Possible assessment methods include measuring strains in an instrumented pavement traversed by the vehicle, measuring dynamic tire forces, or measuring vehicle parameters such as the 'natural frequency' and 'damping ratio'. Each of these measurements involves different assumptions and analysis methods for converting the results into some measure of road damage. Chapter 7 includes a summary of the main conclusions of the paper and recommendations for tire and suspension design, road design and construction, and for vehicle regulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reciprocal-configuration Boundary Element Method calculation of acoustic radiation characteristics has been implemented for a generic tire geometry. The influence of the geometric parameters on the radiation characteristics has been studied. The degree of amplification of noise sources on the tire belt is strongly affected by the overall tire width. In contrast, the tire radius predominantly influences the pattern of the varying amplification around the belt, rather than its absolute level. Radiusing the tire's 'shoulder' region is potentially beneficial in terms of lowering amplification levels, for a tire of fixed overall width. However, it is less effective than maintaining sharp shoulders and reducing the overall width. Thus, for an acoustically optimal belted tire, the overall width should be as small as possible, even if this leads to a larger diameter. The width should not be increased in order to accommodate a radiused crown region. Copyright © (2012) by the Institute of Noise Control Engineering (INCE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper covers wear and energy dissipation of solid epoxy induced by the alternative rubbing between two samples of identical thermosetting polymer. Varying normal load, sliding velocity and sliding distance, the authors were able to define and discuss wear and friction laws and associated energy dissipation. Moreover, traces of several wear mechanisms were distinguished on the worn surfaces and associated with applied conditions. Observed under higher velocity, polymer softening and local state transition were explained by surface temperature estimate and confirmed by infra-red spectroscopy measurements. To conclude this study, all observed phenomena are classified into two wear scenarios according to sliding velocity. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.