937 resultados para Time-domain simulations
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Resumo:
We show that an analysis of the mean and variance of discrete wavelet coefficients of coaveraged time-domain interferograms can be used as a specification for determining when to stop coaveraging. We also show that, if a prediction model built in the wavelet domain is used to determine the composition of unknown samples, a stopping criterion for the coaveraging process can be developed with respect to the uncertainty tolerated in the prediction.
Resumo:
Terahertz pulse imaging (TPI) is a novel noncontact, nondestructive technique for the examination of cultural heritage artifacts. It has the advantage of broadband spectral range, time-of-flight depth resolution, and penetration through optically opaque materials. Fiber-coupled, portable, time-domain terahertz systems have enabled this technique to move out of the laboratory and into the field. Much like the rings of a tree, stratified architectural materials give the chronology of their environmental and aesthetic history. This work concentrates on laboratory models of stratified mosaics and fresco paintings, specimens extracted from a neolithic excavation site in Catalhoyuk, Turkey, and specimens measured at the medieval Eglise de Saint Jean-Baptiste in Vif, France. Preparatory spectroscopic studies of various composite materials, including lime, gypsum and clay plasters are presented to enhance the interpretation of results and with the intent to aid future computer simulations of the TPI of stratified architectural material. The breadth of the sample range is a demonstration of the cultural demand and public interest in the life history of buildings. The results are an illustration of the potential role of TPI in providing both a chronological history of buildings and in the visualization of obscured wall paintings and mosaics.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
The capacitor-commutated converter (CCC) has frequently been used in the conception of HVDC systems connected to busbars with low short circuit level. This alternative arrangement, in substitution to the conventional ones, guarantees less sensitive operational conditions to problems related with the commutation failure in the inverters besides supplying part of the reactive energy to be compensated. Studies related with its performance in steady and transient states have been presented in several works, however its behavior as harmonic source is still little explored. This work presents preliminary studies focusing the generation of characteristic harmonics by this type of converter. Subjects related with the amplification of the harmonic magnitudes are investigated and compared considering similar arrangements of conventional static converters (LCC) and CCC schemes. It is also analyzed the harmonic generation on the dc side of the installation and its influence on the ac side harmonics. The results are obtained from simulations in the time domain in PSpice environment and they clearly illustrate the operational differences between the L CC and the CCC schemes with regard to characteristic harmonic generation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a hybrid way mixing time and frequency domain for transmission lines modelling. The proposed methodology handles steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behaviour. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents an easy and practical procedure to model a three-phase transmission line directly in time domain, without the explicit use of inverse transforms. The proposed methodology takes into account the frequency-dependent parameters of the line, considering the soil and skin effects. In order to include this effect in the state matrices, a fitting method is applied. Furthermore the accuracy of proposed the developed model is verified, in frequency domain, by a simple methodology based on line distributed parameters and transfer function related to the input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust analytic integration procedure to solve the state equations, enabling transient and steady-state simulations. The results are compared with those obtained by the commercial software Microtran (EMTP), taking into account a three-phase transmission line, typical in the Brazilian transmission system.
Resumo:
This article shows a transmission line model for simulation of fast and slow transients, applied to symmetrical or asymmetrical configurations. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents a practical procedure to model three-phase transmission lines directly in time domain, without the explicit or implicit use of inverse transforms. In three-phase representation, analysis modal techniques are applied to decouple the phases in their respective propagation modes, using a correction procedure to set a real and constant matrix for untransposed lines with or without vertical symmetry plane. The proposed methodology takes into account the frequency-dependent parameters of the line and in order to include this effect in the state matrices, a fitting procedure is applied. To verify the accuracy of the proposed state-space model in frequency domain, a simple methodology is described based on line distributed parameters and transfer function associated with input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust integration procedure to solve the state equations, enabling transient and steady-state simulations. The results obtained by the proposed methodology are compared with several established transmission line models in EMTP, taking into account an asymmetrical three-phase transmission line. The principal contribution of the proposed methodology is to handle a steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behavior, by a practical procedure applied directly in time domain for symmetrical or asymmetrical representations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article analyzes the electrical parameters of a 3-phase transmission line using a 280-m-high steel tower that has been proposed for the Amazon transmission system in Brazil. The height of the line conductors and the distance between them are intrinsically related to the longitudinal and transverse parameters of the line. Hence, an accurate study is carried out in order to show the electrical variations between a transmission line using the new technology and a conventional 3-phase 440-kV line, considering a wide range of frequencies and variable soil resistivity. First, a brief review of the fundamental theory of line parameters is presented. In addition, by using a digital line model, simulations are carried out in the time domain to analyze possible and critical over-voltage transients on the proposed line representation.
Resumo:
In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.
Resumo:
ResumoThe main idea of this work is based on the analysis of the electric torque through the acting of the PS in the power system, provided of a control for the compensation degree (PSC). A linear model of the single machine-infinite bus system is used with a PS installed (SMIB/PS system). The variable that represents the presence of PS in the net is associated to the phase displacement introduced in the terminal voltage of the synchronous machine by PS. For the input signals of the PSC are evaluated variations of the angular speed of the rotor, the current magnitude and the active power through the line where the PS is located. The simulations are accomplished to analyze the influence of the PS in the torque formation (synchronizing and damping), of the SMIB/PS system. The analysis are developed in the time and frequency domain.
Resumo:
The purpose of this paper is to present a computer model that enables the operation analysis of a tuned filter as an attenuator device of harmonic generated 12 and 18-pulses converters with Y-generalized differential connection. Are presented in this study physical considerations, mathematical modeling and digital simulations in the frequency domain using the software Orcad-Pspice®, which allows a spectral analysis of the harmonic components and supports the search for an optimal filtering process. It is unequivocally demonstrated the feasibility of the application as an alternative to optimize the use of multipulse converters, and enable the operation of this device within the established regulatory standards. The validation of the proposed model is based on results obtained in the time domain using Matlab/Simulink®. © 2011 IEEE.