944 resultados para Time Series Model
Resumo:
Interannual and seasonal trends of zooplankton abundance and species composition were compared between the Bongo net and Continuous Plankton Recorder (CPR) time series in the Gulf of Maine. Data from 5799 Bongo and 3118 CPR samples were compared from the years 1978–2006. The two programs use different sampling methods, with the Bongo time series composed of bimonthly vertically integrated samples from locations throughout the region, while the CPR was towed monthly at 10 m depth on a transect that bisects the region. It was found that there was a significant correlation between the interannual (r = 0.67, P < 0.01) and seasonal (r = 0.95, P < 0.01) variability of total zooplankton counts. Abundance rankings of individual taxa were highly correlated and temporal trends of dominant copepods were similar between samplers. Multivariate analysis also showed that both time series equally detected major shifts in community structure through time. However, absolute abundance levels were higher in the Bongo and temporal patterns for many of the less abundant taxa groups were not similar between the two devices. The different mesh sizes of the samplers probably caused some of the discrepancies; but diel migration patterns, damage to soft bodied animals and avoidance of the small CPR aperture by some taxa likely contributed to the catch differences between the two devices. Nonetheless, Bongo data presented here confirm the previously published patterns found in the CPR data set, and both show that the abundance increase of the 1990s has been followed by average to below average levels from 2002 to 06.
Resumo:
Evidence for climate-correlated low frequency variability of various components of marine ecosystems has accumulated rapidly over the past 2 decades. There has also been a growing recognition that society needs to learn how the fluctuations of these various components are linked, and to predict the likely amplitude and steepness of future changes. Demographic characteristics of marine zooplankton make them especially suitable for examining variability of marine ecosystems at interannual to decadal time scales. Their life cycle duration is short enough that there is little carryover of population membership from year to year, but long enough that variability can be tracked with monthly-to-seasonal sampling. Because zooplankton are rarely fished, comparative analysis of changes in their abundance can greatly enhance our ability to evaluate the importance of and interaction between physical environment, food web, and fishery harvest as causal mechanisms driving ecosystem level changes. A number of valuable within-region analyses of zooplankton time series have been published in the past decade, covering a variety of modes of variability including changes in total biomass, changes in size structure and species composition, changes in spatial distribution, and changes in seasonal timing. But because most zooplankton time series are relatively short compared to the time scales of interest, the statistical power of local analyses is often low, and between-region and between-variable comparisons are also needed. In this paper, we review the results of recent within- and between-region analyses, and suggest some priorities for future work.
Resumo:
Coastal zooplankton have been investigated since 1984 at a Long Term Ecological Research station MC (LTER-MC) in the inner Gulf of Naples (Tyrrhenian Sea, Western Mediterranean). The sampling site, located between the littoral and the open sea systems, has very active hydrography that affects plankton communities. The present work was aimed at establishing whether, in such a dynamic and variable environment, species associations and homogeneous periods could be identified as characteristic and stable features of the mesozooplankton over the period 1984–2006. Hierarchical clustering was applied to assess species associations based on a matrix of similarities between species (R-mode), and homogeneous periods based on a matrix of similarities between observations (Q-mode). The Indicator Value index [IndVal, Dufrene and Legendre (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366] was calculated to identify species characterizing each period. Five taxonomic groups with well-defined composition and abundance were identified as robust associations that likely reflect different modes of community functioning. The temporal course of these associations was largely shaped by strong seasonal forcing comprising both physical and biological (e.g. trophic) signals. These associations persisted over the long term, thus indicating some stable characters in the Naples zooplankton time-series, providing evidence of resilience in communities in highly variable coastal conditions.
Resumo:
short doi:10/rf8 full doi:10.5285/f014becf-d6d6-3bb9-e044-000b5de50f38
Resumo:
We compare the long-term and seasonal patterns of abundance and phenology of the cyclopoid copepod Oithona similis at the L4 site (1988–2013) in the North Atlantic and at the LTER-MC site (1984–2013) in the Mediterranean Sea to investigate whether high temperature limits the occurrence of this species with latitudinal cline. The two sites are well suited to testing this hypothesis as they are characterized by similar chlorophyll a concentration (Chl a) but different temperature [sea surface temperature (SST)]. The abundance of O. similis at L4 was ∼10 times higher than at LTER-MC. Moreover, this species had several peaks of abundance during the year at L4 but a single peak in spring at LTER-MC. The main mode of temporal variability in abundance was seasonal at both sites. The abundance of O. similis was negatively correlated with SST only at LTER-MC, whereas it was positively correlated with Chl a at both sites. Oithona similis had a temperature optimum between 15 and 20°C reaching maximum abundance at ∼16.5°C at LTER-MC, but showed no Chl a optimum at either site. We conclude that the abundance of O. similis increases with prey availability up to 16.5°C and that temperature >20°C represents the main limiting factor for population persistence.
Resumo:
Calanus helgolandicus is a key copepod of the NE Atlantic and fringing shelves, with a distribution that is expanding northwards with oceanic warming. The Plymouth L4 site has warmed over the past 25-years, and experiences large variations in the timing and availability of food for C. helgolandicus. Here we examine the degree to which these changes translate into variation in reproductive output and subsequently C. helgolandicus population size. Egg production rates (eggs female−1 day−1) were maximal in the spring to early-summer period of diatom blooms and high ciliate abundance, rather than during the equally large autumn blooms of autotrophic dinoflagellates. Egg hatch success was lower in spring however, with a greater proportion of naupliar deformities then also. Both the timing and the mean summer abundance of C. helgolandicus (CI–CVI) reflected those of spring total reproductive output. However this relationship was driven by inter-annual variability in female abundance and not that of egg production per female, which ranged only two-fold. Winter abundance of C. helgolandicus at L4 was much more variable than abundance in other seasons, and reflected conditions from the previous growing season. However, these low winter abundances had no clear carry-over signal to the following season’s population size. Overall, the C. helgolandicus population appears to be surprisingly resilient at this dynamic, inshore site, showing no long-term phenology shift and only a four-fold variation in mean abundance between years. This dampening effect may reflect a series of mortality sources, associated with the timing of stratification in the early part of the season, likely affecting egg sinking and loss, plus intense, density-dependent mortality of early stages in mid-summer likely through predation.
Resumo:
Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.
Resumo:
Based on an algorithm for pattern matching in character strings, we implement a pattern matching machine that searches for occurrences of patterns in multidimensional time series. Before the search process takes place, time series are encoded in user-designed alphabets. The patterns, on the other hand, are formulated as regular expressions that are composed of letters from these alphabets and operators. Furthermore, we develop a genetic algorithm to breed patterns that maximize a user-defined fitness function. In an application to financial data, we show that patterns bred to predict high exchange rates volatility in training samples retain statistically significant predictive power in validation samples.
Resumo:
Objective To evaluate the feasibility of conducting a definitive study to assess the impact of introducing a rapid PCR-based test for candidemia on antifungal drug prescribing. Method Prospective, single centre, interrupted time series study consisting of three periods of six months' duration. The assay was available during the second period, during which the PCR assay was available for routine use by physicians Monday–Friday with guaranteed 24-h turnaround time. For each period total antifungal drug use, expressed as treatment-days, was recorded and an adjustment was made to exclude estimated use for proven candidemia. Also, during the intervention period, antifungal prescribing decisions for up to 72 h after each PCR result became available were recorded as either concordant or discordant with that result. Results While overall antifungal use remained relatively stable throughout, after adjustment for candidemia, there was a 38% reduction in use following introduction of the PCR test; however, this was nonsignificant at the 95% level. During the intervention period overall concordance between the PCR result and prescribing decisions was 84%. Conclusions The PCR assay for candidemia was requested, prescribing decisions were generally concordant with the results produced and there was an apparent decrease in antifungal prescription, although this was sustained even after withdrawal of the intervention; these findings should be more thoroughly evaluated in a larger trial.