976 resultados para Thermal radiation
Resumo:
Patients undergoing radiation therapy for cancer face a series of challenges that require support from a multidisciplinary team which includes radiation oncology nurses. However, the specific contribution of nursing, and the models of care that best support the delivery of nursing interventions in the radiotherapy setting, is not well described. In this case study, the Interaction Model of Client Health Behaviour and the associated principles of person-centred care were incorporated into a new model of care that was implemented in one radiation oncology setting in Brisbane, Australia. The new model of care was operationalised through a Primary Nursing/Collaborative Practice framework. To evaluate the impact of the new model for patients and health professionals, multiple sources of data were collected from patients and clinical staff prior to, during, and 18 months following introduction of the practice redesign. One cohort of patients and clinical staff completed surveys incorporating measures of key outcomes immediately prior to implementation of the model, while a second cohort of patients and clinical staff completed these same surveys 18 months following introduction of the model. In-depth interviews were also conducted with nursing, medical and allied health staff throughout the implementation phase to obtain a more comprehensive account of the processes and outcomes associated with implementing such a model. From the patients’ perspectives, this study demonstrated that, although adverse effects of radiotherapy continue to affect patient well-being, patients continue to be satisfied with nursing care in this specialty, and that they generally reported high levels of functioning despite undergoing a curative course of radiotherapy. From the health professionals’ perspective, there was evidence of attitudinal change by nursing staff within the radiotherapy department which reflected a greater understanding and appreciation of a more person-centred approach to care. Importantly, this case study has also confirmed that a range of factors need to be considered when redesigning nursing practice in the radiotherapy setting, as the challenges associated with changing traditional practices, ensuring multidisciplinary approaches to care, and resourcing a new model were experienced. The findings from this study suggest that the move from a relatively functional approach to a person-centred approach in the radiotherapy setting has contributed to some improvements in the provision of individualised and coordinated patient care. However, this study has also highlighted that primary nursing may be limited in its approach as a framework for patient care unless it is supported by a whole team approach, an appropriate supportive governance model, and sufficient resourcing. Introducing such a model thus requires effective education, preparation and ongoing support for the whole team. The challenges of providing care in the context of complex interdisciplinary relationships have been highlighted by this study. Aspects of this study may assist in planning further nursing interventions for patients undergoing radiotherapy for cancer, and continue to enhance the contribution of the radiation oncology nurse to improved patient outcomes.
Resumo:
The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.
Resumo:
Recent epidemiologic studies have suggested that ultraviolet radiation (UV) may protect against non-Hodgkin lymphoma (NHL), but few, if any, have assessed multiple indicators of ambient and personal UV exposure. Using the US Radiologic Technologists study, we examined the association between NHL and self-reported time outdoors in summer, as well as average year-round and seasonal ambient exposures based on satellite estimates for different age periods, and sun susceptibility in participants who had responded to two questionnaires (1994–1998, 2003–2005) and who were cancer-free as of the earlier questionnaire. Using unconditional logistic regression, we estimated the odds ratio (OR) and 95% confidence intervals for 64,103 participants with 137 NHL cases. Self-reported time outdoors in summer was unrelated to risk. Lower risk was somewhat related to higher average year-round and winter ambient exposure for the period closest in time, and prior to, diagnosis (ages 20–39). Relative to 1.0 for the lowest quartile of average year-round ambient UV, the estimated OR for successively higher quartiles was 0.68 (0.42–1.10); 0.82 (0.52–1.29); and 0.64 (0.40–1.03), p-trend = 0.06), for this age period. The lower NHL risk associated with higher year-round average and winter ambient UV provides modest additional support for a protective relationship between UV and NHL.
Resumo:
This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds
Resumo:
Cubic indium hydroxide nanomaterials were obtained by a low temperature soft-chemical method without any surfactants. The transition of nano-cubic indium hydroxide to cubic indium oxide during dehydroxylation has been studied by infrared emission spectroscopy. The spectra are related to the structure of the materials and the changes in the structure upon thermal treatment. The infrared absorption spectrum of In(OH)3 is characterised by an intense OH deformation band at 1150 cm-1 and two O-H stretching bands at 3107 and 3221 cm-1. In the infrared emission spectra, the hydroxyl-stretching and hydroxyl-bending bands diminish dramatically upon heating, and no intensity remains after 200 °C. However, new low intensity bands are found in the OH deformation region at 915 cm-1 and in OH stretching region at 3437 cm-1. These bands are attributed to the vibrations of newly formed InOH bonds because of the release and transfer of protons during calcination of the nanomaterial. The use of infrared emission spectroscopy enables the low-temperature phase transition brought about through dehydration of In(OH)3 nanocubes to be studied.
Resumo:
The aluminate hydrotalcites are proposed to have either of the following formulas: Mg4Al2(OH)12(CO3 2-)·xH2O or Mg4Al2(OH)12(CO3 2-, SO4 2-)·xH2O. A pure hydrotalcite phase forms when magnesium chloride and aluminate solns. are mixed at a 1:1 volumetric ratio at pH 14. The synthesis of the aluminate hydrotalcites using seawater results in the formation of an impurity phase bayerite. Two decompn. steps have been identified for the aluminate hydrotalcites: (1) removal of interlayer water (230 °C) and (2) simultaneous dehydroxylation and decarbonation (330 °C).
Resumo:
Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.
Resumo:
Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.
Resumo:
The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.