996 resultados para Texture recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging research has shown localised brain activation to different facial expressions. This, along with the finding that schizophrenia patients perform poorly in their recognition of negative emotions, has raised the suggestion that patients display an emotion specific impairment. We propose that this asymmetry in performance reflects task difficulty gradations, rather than aberrant processing in neural pathways subserving recognition of specific emotions. A neural network model is presented, which classifies facial expressions on the basis of measurements derived from human faces. After training, the network showed an accuracy pattern closely resembling that of healthy subjects. Lesioning of the network led to an overall decrease in the network’s discriminant capacity, with the greatest accuracy decrease to fear, disgust and anger stimuli. This implies that the differential pattern of impairment in schizophrenia patients can be explained without having to postulate impairment of specific processing modules for negative emotion recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel shape recognition algorithm was developed to autonomously classify the Northern Pacific Sea Star (Asterias amurenis) from benthic images that were collected by the Starbug AUV during 6km of transects in the Derwent estuary. Despite the effects of scattering, attenuation, soft focus and motion blur within the underwater images, an optimal joint classification rate of 77.5% and misclassification rate of 13.5% was achieved. The performance of algorithm was largely attributed to its ability to recognise locally deformed sea star shapes that were created during the segmentation of the distorted images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.