978 resultados para Temperature measurements
Resumo:
This report gives a comprehensive general description of the scientific activities of Cruise 2 of R. R. S. 'Discovery'. These were largely geological and geophysical and were part of the British contribution to the International Indian Ocean Expedition. In addition to the thirteen geophysicists and geologists on board, there were five scientists involved in ocean chemistry, temperature measurements and ornithology making continuous observations - their accounts are also included. The report of a geological expediton ashore in the Seychelles is given in section 6.
Resumo:
In refrigeration systems a small amount of compressor lubricant is entrained in the refrigerant and circulated through the system, where some is retained in each component. The suction line to the compressor has the largest potential for oil retention. This paper presents results from an experimental apparatus that has been constructed to circulate POE (polyolester) oil and R410A at a controlled mass flux, OCR (oil in circulation ratio), and apparent superheat, and to directly measure the pressure drop and mass of oil retained in horizontal and vertical suction lines. The bulk vapor velocity and overall void fraction are determined from direct mass and temperature measurements. The oil retention, pressure drop, and flow regimes near the minimum ASHRAE recommended mass flux condition are explored. It was found that oil retention begins to increase sharply even above the minimum recommended flux, so conditions near the minimum should be avoided. Two relationships were developed to predict the oil retention in the vertical and horizontal suction lines. The average error from the predictions method was 10.9% for the vertical tube, and 7.9% for the horizontal tube.
Resumo:
This work represents ongoing efforts to study high-enthalpy carbon dioxide flows in anticipation of the upcoming Mars Science Laboratory (MSL) and future missions to the red planet. The work is motivated by observed anomalies between experimental and numerical studies in hypervelocity impulse facilities for high enthalpy carbon dioxide flows. In this work, experiments are conducted in the Hypervelocity Expansion Tube (HET) which, by virtue of its flow acceleration process, exhibits minimal freestream dissociation in comparison to reflected shock tunnels. This simplifies the comparison with computational result as freestream dissociation and considerable thermochemical excitation can be neglected. Shock shapes of the MSL aeroshell and spherical geometries are compared with numerical simulations incorporating detailed CO2 thermochemical modeling. The shock stand-off distance has been identified in the past as sensitive to the thermochemical state and as such, is used here as an experimental measurable for comparison with CFD and two different theoretical models. It is seen that models based upon binary scaling assumptions are not applicable for the low-density, small-scale conditions of the current work. Mars Science Laboratory shock shapes at zero angle of attack are also in good agreement with available data from the LENS X expansion tunnel facility, confi rming results are facility-independent for the same type of flow acceleration, and indicating that the flow velocity is a suitable first-order matching parameter for comparative testing. In an e ffort to address surface chemistry issues arising from high-enthalpy carbon dioxide ground-test based experiments, spherical stagnation point and aeroshell heat transfer distributions are also compared with simulation. Very good agreement between experiment and CFD is seen for all shock shapes and heat transfer distributions fall within the non-catalytic and super-catalytic solutions. We also examine spatial temperature profiles in the non-equilibrium relaxation region behind a stationary shock wave in a hypervelocity air Mach 7.42 freestream. The normal shock wave is established through a Mach reflection from an opposing wedge arrangement. Schlieren images confirm that the shock con guration is steady and the location is repeatable. Emission spectroscopy is used to identify dissociated species and to make vibrational temperature measurements using both the nitric oxide and the hydroxyl radical A-X band sequences. Temperature measurements are presented at selected locations behind the normal shock. LIFBASE is used as the simulation spectrum software for OH temperature-fitting, however the need to access higher vibrational and rotational levels for NO leads to the use of an in-house developed algorithm. For NO, results demonstrate the contribution of higher vibrational and rotational levels to the spectra at the conditions of this study. Very good agreement is achieved between the experimentally measured NO vibrational temperatures and calculations performed using an existing state-resolved, three-dimensional forced harmonic oscillator thermochemical model. The measured NO A-X vibrational temperatures are significantly higher than the OH A-X temperatures.
Resumo:
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.
Resumo:
Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.
Resumo:
The Theoretical and Experimental Tomography in the Sea Experiment (THETIS 1) took place in the Gulf of Lion to observe the evolution of the temperature field and the process of deep convection during the 1991-1992 winter. The temperature measurements consist, of moored sensors, conductivity-temperature-depth and expendable bathythermograph surveys, ana acoustic tomography. Because of this diverse data set and since the field evolves rather fast, the analysis uses a unified framework, based on estimation theory and implementing a Kalman filter. The resolution and the errors associated with the model are systematically estimated. Temperature is a good tracer of water masses. The time-evolving three-dimensional view of the field resulting from the analysis shows the details of the three classical convection phases: preconditioning, vigourous convection, and relaxation. In all phases, there is strong spatial nonuniformity, with mesoscale activity, short timescales, and sporadic evidence of advective events (surface capping, intrusions of Levantine Intermediate Water (LIW)). Deep convection, reaching 1500 m, was observed in late February; by late April the field had not yet returned to its initial conditions (strong deficit of LIW). Comparison with available atmospheric flux data shows that advection acts to delay the occurence of convection and confirms the essential role of buoyancy fluxes. For this winter, the deep. mixing results in an injection of anomalously warm water (Delta T similar or equal to 0.03 degrees) to a depth of 1500 m, compatible with the deep warming previously reported.
Resumo:
Tartrate precipitation is still a relevant subject in Enology, being one of the most common problems of wine physical-chemical instability. Potassium bitartrate and calcium tartrate precipitations are undesirable phenomena which can occur in bottled wines, especially when these are stored at low temperatures. The occurrence of tartrate salt crystals (potassium hydrogen tartrate – KHT and calcium tartrate – CaT) in bottles has severe consequences in the final aspect of the wine and therefore on the consumer’s acceptance, making tartrate wine stabilization virtually mandatory before bottling. Currently, several solutions to prevent this haze are available: subtractive methods including the conventional cold treatments that promote the cristalization of KHT, removal of potassium and calcium ions either by electrodialysis or ion exchange resins; and additive methods such as the addition of carboxymethylcellulose, mannoproteins or metatartaric acid. For monitoring the KHT stability, several analytical methods have been developed based on conductivity evaluation, namely the mini-contact test and the saturation temperature measurements (TS). These methods will also be revisited, aiming to raise awareness of their utility as tools in quality control of wines. This review addresses tartrate precipitation subject and the most recent preventive solutions available, pointing out the advantages and drawbacks of each one, and its impact on the final characteristics of the wine.
Resumo:
In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]
Resumo:
The effect of skin temperature and hydration status has been suggested by some researchers as a common cause of variation in bioimpedance measurements of the body. This paper details a simple method of measuring the transverse impedance of the skin. The measured resistance and reactance was found to decrease by 35% and 18% for an increase of 20 degrees C. Similarly a decrease in resistance and reactance of 20% and 25% respectively was detected after hydration of the skin. However, the changes in skin temperature and hydration were found to have no significant effect on the whole body bioimpedance measurements using the standard tetra-polar electrode technique. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Hot-wire anemometers at low operating currents are used as fast response resistance thermometers for the study of heated turbulent flows. Simultaneous measurement of temperature and velocity is generally performed with multi-wire arrays. In order to give good spatial resolution a new layout has been tested which uses an inclined temperature wire positioned parallel to the nearest inclined velocity wire. This leads to an asymmetric wire arrangement relative to the mean flow direction. As expected, a reduction in thermal interference from the velocity wires results when compared with an array containing a temperature wire placed normal to the flow. However, measurement of higher order moments of fluctuating quantities in an axisymmetric jet shows considerable distortion of radial distributions which is traced to alteration of the temperature field sensed by the temperature wire. When inclined velocity sensitive wires contain a temperature component, the latter may be affected by the same phenomenon.
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ∼0.5 μA.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
This work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).