995 resultados para Temperature Oscillation
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.
Resumo:
In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
Resumo:
The influence of Loire and Gironde River discharges over the sea surface temperature (SST) in the eastern Bay of Biscay (0.6º–36.6ºW, 44.2º–47.8ºW) was analyzed by means of two complementary databases (MODIS and OISST1/4). The area influenced by river plume showed a different SST when compared with the adjacent oceanic area for the months when the plume attains its highest extension (December, January, and February). Ocean was observed to warm at a rate of approximately 0.3ºC dec−1 while temperature at the area influenced by the rivers cooled at a rate of −0.15ºC dec−1 over the period 1982–2014. The mere presence of a freshwater layer is able to modulate the warming observed at adjacent ocean locations since the coastal area is isolated from the rest of the Bay. This nearshore strip is the only part of the Bay where changes in SST depend on North Atlantic Oscillation (NAO) but not on North Atlantic SST represented by the Atlantic Multidecadal Oscillation (AMO). These different cooling-warming trends are even more patent over the last years (2002–2014) under atmospheric favorable conditions for plume enhancement. River runoff increased at a rate on the order of 120 m3s−1dec−1 over that period and southwesterly winds, which favor the confinement of the plume, showed a positive and significant trend both in duration and intensity. Thus, the coastal strip has been observed to cool at a rate of −0.5°C dec−1.
Resumo:
In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.