965 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation
Resumo:
Mobility of naturally occurring U-238 and U-234 radionuclides was studied in a low permeability, reducing claystone formation (Opalinus Clay) near its contact with an overlying oxidising aquifer (Dogger Limestones) at Mont Terri, Switzerland. Our data point to a limited redistribution of U in some of the studied samples. Observed centimetre-scale U mobility is explained by slow diffusive transport of U-234 in the pore waters of the Opalinus Clay driven by spatially variable in situ supply (by alpha-recoil) of U-234 from the rock matrix. Metre-scale mobility is interpreted as a result of infiltration of meteoric water into the overlying aquifer which developed gradients of U concentration across the two rock formations. This triggered a slow in-diffusion of U with (U-234/U-238) > 1 into the Opalinus Clay as attested by a clear-cut pattern of decreasing bulk rock (U-234/U-238) inwards the Opalinus Clay, away from the Dogger Limestones.
Resumo:
The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.
Resumo:
An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.
Resumo:
Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.
Resumo:
Slope stability analysis is a major area of research in geotechnical engineering. That being said, very little is written in the geotechnical engineering literature on the design of box-cuts. The goal of this thesis will be to investigate the proper design of a boxcuts, and to design a box-cut for access to an underground copper mine. Issues that need to be considered in the box-cut design include, long term dewatering design, slope stability analysis, and erosion control. The soils at the project site were extremely low permeability, as a result a system of ejectors was designed both to improve the stability of the slopes and prevent flooding. Based on the results of limit equilibrium analysis and finite element analysis, a slope design of two horizontal on one vertical was selection, with a rock fill buttress providing reinforcement. Finally, Michigan DOT standards for seeding were used to provide erosion control
Resumo:
This dissertation represents experimental and numerical investigations of combustion initiation trigged by electrical-discharge-induced plasma within lean and dilute methane air mixture. This research topic is of interest due to its potential to further promote the understanding and prediction of spark ignition quality in high efficiency gasoline engines, which operate with lean and dilute fuel-air mixture. It is specified in this dissertation that the plasma to flame transition is the key process during the spark ignition event, yet it is also the most complicated and least understood procedure. Therefore the investigation is focused on the overlapped periods when plasma and flame both exists in the system. Experimental study is divided into two parts. Experiments in Part I focuses on the flame kernel resulting from the electrical discharge. A number of external factors are found to affect the growth of the flame kernel, resulting in complex correlations between discharge and flame kernel. Heat loss from the flame kernel to code ambient is found to be a dominant factor that quenches the flame kernel. Another experimental focus is on the plasma channel. Electrical discharges into gases induce intense and highly transient plasma. Detailed observation of the size and contents of the discharge-induced plasma channel is performed. Given the complex correlation and the multi-discipline physical/chemical processes involved in the plasma-flame transition, the modeling principle is taken to reproduce detailed transitions numerically with minimum analytical assumptions. Detailed measurement obtained from experimental work facilitates the more accurate description of initial reaction conditions. The novel and unique spark source considering both energy and species deposition is defined in a justified manner, which is the key feature of this Ignition by Plasma (IBP) model. The results of numerical simulation are intuitive and the potential of numerical simulation to better resolve the complex spark ignition mechanism is presented. Meanwhile, imperfections of the IBP model and numerical simulation have been specified and will address future attentions.
Resumo:
A silicon-based microcell was fabricated with the potential for use in in-situ transmission electron microscopy (TEM) of materials under plasma processing. The microcell consisted of 50 nm-thick film of silicon nitride observation window with 60μm distance between two electrodes. E-beam scattering Mont Carlo simulation showed that the silicon nitride thin film would have very low scattering effect on TEM primary electron beam accelerated at 200 keV. Only 4.7% of primary electrons were scattered by silicon nitride thin film and the Ar gas (60 μm thick at 1 atm pressure) filling the space between silicon nitride films. Theoretical calculation also showed low absorption of high-energy e-beam electrons. Because the plasma cell needs to survive the high vacuum TEM chamber while holding 1 atm internal pressure, a finite element analysis was performed to find the maximum stress the low-stress silicon nitride thin film experienced under pressure. Considering the maximum burst stress of low-stress silicon nitride thin film, the simulation results showed that the 50 nm silicon nitride thin film can be used in TEM under 1 atm pressure as the observation window. Ex-situ plasma generation experiment demonstrated that air plasma can be ignited at DC voltage of 570. A Scanning electron microscopy (SEM) analysis showed that etching and deposition occurred during the plasma process and larger dendrites formed on the positive electrode.
Resumo:
Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.
Resumo:
Consideration of the geosphere for isolation of nuclear waste has generated substantial interest in the origin, age, and movement of fl uids and gases in low-permeability rock formations. Here, we present profi les of isotopes, solutes, and helium in porewaters recovered from 860 m of Cambrian to Devonian strata on the eastern fl ank of the Michigan Basin. Of particular interest is a 240-m-thick, halite-mineralized, Ordovician shale and carbonate aquiclude, which hosts Br–-enriched, post-dolomitic brine (5.8 molal Cl) originating as evaporated Silurian seawater. Authigenic helium that has been accumulating in the aquiclude for more than 260 m.y. is found to be isolated from underlying allochthonous, 3He-enriched helium that originated from the rifted base of the Michigan Basin and the Canadian Shield. The Paleozoic age and immobility of the pore fl uids in this Ordovician aquiclude considerably strengthen the safety case for deep geological repositories, but also provide new insights into the origin of deep crustal brines and opportunities for research on other components of a preserved Paleozoic porewater system.
Resumo:
The chemical and isotopic characterization of porewater residing in the inter- and intragranular pore space of the low-permeability rock matrix is an important component with respect to the site characterization and safety assessment of potential host rocks for a radioactive waste disposal. The chemical and isotopic composition of porewater in such low permeability rocks has to be derived by indirect extraction techniques applied to naturally saturated rock material. In most of such indirect extraction techniques – especially in case of rocks of a porosity below about 2 vol.% – the original porewater concentrations are diluted and need to be back-calculated to in-situ concentrations. This requires a well-defined value for the connected porosity – accessible to different solutes under in-situ conditions. The derivation of such porosity values, as well as solute concentrations, is subject to various perturbations during drilling, core sampling, storage and experiments in the laboratory. The present study aims to demonstrate the feasibility of a variety of these techniques to charac-terize porewater and solute transport in crystalline rocks. The methods, which have been de-veloped during multiple porewater studies in crystalline environments, were applied on four core samples from the deep borehole DH-GAP04, drilled in the Kangerlussuaq area, Southwest Greenland, as part of the joint NWMO–Posiva–SKB Greenland Analogue Project (GAP). Potential artefacts that can influence the estimation of in situ porewater chemistry and isotopes, as well as their controls, are described in detail in this report, using specific examples from borehole DH-GAP04
Resumo:
The time variable Earth’s gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth’s gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth’s gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003–2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.
Resumo:
This volume represents the proceedings of the Sixteenth Annual Biochemical Engineering Symposium held at Kansas State University on April 26, 1986. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of many of the papers that will be published in full elsewhere. ContentsEnd-Product Inhibition of the Acetone-Butanol Fermentation—Bob Kuhn, Colorado State University Effect of Multiple Substrates in Ethanal Fermentations from Cheese Whey—C.J. Wang, University of Missouri Extraction and Fermentation of Ensiled Sweet Sorghum—Karl Noah, Colorado State University Removal of Nucleic Acids from Bakers' Yeast—Richard M. Cordes, Iowa State University Modeling the Effects of Plasmid Replication and Product Repression on the Growth Rate of Recombinant Bacteria—William E. Bentley, University of Colorado Indirect Estimates of Cell Concentrations in Mass Cultivation of Bacterial Cells—Andrew Fisher, University of Missouri A Mathematical Model for Liquid Recirculation in Airlift Columns—C.H.Lee, Kansas State University Characterization of Imperfect Mixing of Batch Reactors by Two Compartment Model—Peter Sohn, University of Missouri First Order Breakage Model for the Degradation of Pullalan in the Batch Fermentor—Stephen A. Milligan, Kansas State University Synthesis and Nuclear Magnetic Resonance of 13C-Labeled Amylopectin and Maltooligosaccharides—Bernard Y. Tao, Iowa State University Preparation of Fungal Starter Culture in Gas Fluidized Bed Reactor—Pal Mihaltz, Colorado State University Yeast Flocculation and Sedimentation—David Szlag, University of Colorado Protein Enrichment of Extrusion Cooked Corn by Solid Substrate Fermentation—Lucas Alvarez-Martinez, Colorado State University Optimum Design of a Hollow Fiber Mammalian Cell Reactor—Thomas Chresand, Colorado State University Gas Chromatography and Nuclear Magnetic Resonance of Trifluoroacetylated Carbohydrates—Steven T. Summerfelt, Iowa State University Kinetic and Bioenergetic Considerations for Modeling Photosynthetic Microbial P~ocesses in Producing Biomass and Treating Wastewater—H. Y. Lee, Kansas State University Mathematical Modeling and Simulation of Bicarbonate-Limited Photsynthetic Growth in Continuous Culture—Craig Curless, Kansas State University Data Acquisition and Control of a Rotary Drum Solid State Fermentor—Mnasria A. Habib, Colorado State University Biodegradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D)—Greg Sinton, Kansas State University
Resumo:
Legs 173 and 149 of the Ocean Drilling Program profiled a zone of exhumed mantle peridotite at the ocean-continent transition (OCT) beneath the Iberia Abyssal Plain. The zone of exhumed peridotite appears to be tens of kilometers wide and is situated between blocks of continental crust and the first products of ocean accretion. Exhumed peridotite is 95-100% serpentinised to probable depths of 2-3 km. Down core oxygen isotope profiles of serpentinised peridotite at Sites 1068 and 1070 (Leg 173) show evidence for two fluid infiltration events. The earlier event involved pervasive infiltration of comparatively warm (>175°C) sea water and accompanied serpentinisation. The later event involved structurally focused infiltration of comparatively cool (650-150°C) sea water and accompanied active mantle exhumation. We therefore conclude that the uppermost mantle was serpentinised before it was exhumed at the Iberian OCT. Implicit to this conclusion is that a sizeable region of serpentinised mantle existed directly beneath thinned but intact continental crust. Serpentinite has comparatively low density, low frictional strength and low permeability. The presence of such a "soft" layer may have localised deformation and consequently promoted detachment-style exhumation of the uppermost mantle. The low permeability of a serpentinite 'cap' layer might help to explain the lack of observed melt at the Iberian OCT.
Resumo:
Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.
Resumo:
Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.