994 resultados para TG
Resumo:
The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.
Resumo:
Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions 700 mm x 300 mm x 700 mm. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.
Resumo:
Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3-8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal-India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar-Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar-Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow-Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow-Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11-0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.
Resumo:
In the present work, Co1-xMnxFe2O4 nanoparticles were synthesized by the low-temperature auto-combustion method. The thermal decomposition process was investigated by means of differential and thermal gravimetric analysis (TG-DTA) that showed the precursor yield the final product above 450 degrees C. The phase purity and crystal lattice symmetry were estimated from X-ray diffraction (XRD). Microstructural features observed by scanning electron microscopy (SEM) demonstrates that the fine clustered particles were formed with an increase in average grain size with Mn2+ content. Fourier transform infrared spectroscopy (FTIR) study confirms the formation of spinel ferrite. Room temperature magnetization measurements showed that the magnetization M-s increases from 29 to 60 emu/g and H-c increases from 13 to 28 Oe with increase in Mn2+ content, which implies that these materials may be applicable for magnetic data storage and recording media. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.
Resumo:
Two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000-2006, a period of stable atmospheric concentrations. From 1990 to 2000, the top-down and bottom-up visions agree on the time-phasing of global total and wetland emission anomalies. The process-discriminating inversion indicates that wetlands dominate the time-variability of methane emissions (90% of the total variability). The contribution of tropical wetlands to the anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between -41 and -19 Tg yr(-1) in 1992) and during the alternate 1997-1998 El-Nino/1998-1999 La-Nina (maximal anomalies in tropical regions between +16 and +22 Tg yr(-1) for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg yr(-1) for the process-based model). Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, the top-down and bottom-up approaches agree on the fact that South America is the main region contributing to anomalies in natural wetland emissions, but they disagree on the sign and magnitude of the flux trend in the Amazon basin. A negative trend (-3.9 +/- 1.3 Tg yr(-1)) is inferred by the process-discriminating inversion whereas a positive trend (+1.3 +/- 0.3 Tg yr(-1)) is found by the process model. Although processed-based models have their own caveats and may not take into account all processes, the positive trend found by the B-U approach is considered more likely because it is a robust feature of the process-based model, consistent with analysed precipitations and the satellite-derived extent of inundated areas. On the contrary, the surface-data based inversions lack constraints for South America. This result suggests the need for a re-interpretation of the large increase found in anthropogenic methane inventories after 2000.
Resumo:
This paper presents the case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud. Red mud is a waste product from the Bayer process of Aluminum industry. Geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed in the paper. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and combination of geocell and geogrid. The results of the experimental and analytical studies revealed that the use of combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base. The reported embankment is located in Lanjigharh (Orissa) in India. Construction of the embankment on the geocell foundation has already been completed. The constructed embankmenthas already sustained two monsoon rains without any cracks and seepage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.
Resumo:
The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.
Resumo:
Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.
Resumo:
Incident energy gets transmitted, reflected and absorbed across an interface in jointed rock mass leading to energy dissipation and alteration of waves. Wave velocities get attenuated during their propagation across joints and this behavior is studied using bender/extender element tests. The velocity attenuation and modulus reduction observed in experimental tests are modeled with three dimensional distinct element code and results are validated. Normal propagation of an incident shear wave through a jointed rock mass cause slip of the rock blocks if shear stress of wave exceeds the shear strength of the joint. As the properties of joint determine the transmission of energy across an interface, a parametric study is then conducted with the validated numerical model by varying the parameters that may determine the energy transmission across a joint using modified Miller's method. Results of the parametric study are analyzed and presented in the paper. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The effect of consolidation on the undrained bearing capacity of both rough and smooth strip and circular surface foundations is investigated, examining the influence of the magnitude and duration of an applied preload and the initial over-consolidation ratio of the deposit. The investigation comprised small strain finite-element analysis, with the soil response represented by Modified Cam Clay. The results are distilled into dimensionless and generalised forms, from which simple trends emerge. Based on these results, a simple method for predicting the consolidated undrained bearing capacity is proposed.
Resumo:
Background: This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods: Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1 alpha were also studied in addition to histopathology examination of liver tissue in all the groups. Results: HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1 alpha compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b. wt) treated group when compared to HFD group at protein level. Conclusions: Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.