688 resultados para TEC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ∼1200 ms -1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper. Copyright 2008 by the American Geophysical Union.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observable GNSS (Global Navigation Satellite System) are affected by systematic errors due to free electrons present in the ionosphere. The error associated with the ionosphere depends on the Total Electron Content (TEC), which is influenced by several variables: solar cycle, season, local time, geomagnetic activity and geographic location. The GPS (Global Positioning System), GLONASS (Global Orbiting Navigation Satellite System) and Galileo dual frequency receivers allow the calculation of the error that affects the GNSS observables and the TEC. Using the rate of change of TEC (ROT - Rate of TEC) indices that indicate irregularities of the ionosphere can be determined, allowing inferences about its behavior. Currently it is possible to perform such studies in Brazil, due to the several Active Networks available, such as RBMC/RIBaC (Rede Brasileira de Monitoramento Contínuo/Rede INCRA de Bases Comunitárias) and GNSS Active Network of São Paulo. The proposed research aimed at estimating and analysing of indexes of irregularities of the ionosphere, besides supplying the geosciences of information about the behavior of the ionosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this paper is to analyze the influence of the intense geomagnetic storms in the ionosphere and GNSS (GPS) positioning. It was analyzed the effects of intense geomagnetic storm of November 20th 2003 using GPS data from RBMC (Brazilian Network for Continuous Monitoring) located in different sites in the Brazilian region and ionosphere global maps. While analyzing the results, it can be observed an increase in the electron density of the ionosphere in the regions near to the geomagnetic equator in the afternoon on the day of the storm. In the period after the sunset of the storm day, there is an increase in the density of free electrons and ionospheric irregularities in regions furthest from the geomagnetic equator, when compared to geomagnetically quiet days. When the positioning point is analyzed, it is observed high discrepancies values in planimetry and altimetry at the same position for periods of changes that occurred in the ionosphere, especially for the GPS stations located furthest from the geomagnetic equator in the period after the sunset Sun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)