900 resultados para T CD8
Resumo:
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.
Resumo:
A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.
Resumo:
UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Resumo:
The purpose of this research was to use next generation sequencing to identify mutations in patients with primary immunodeficiency diseases whose pathogenic gene mutations had not been identified. Remarkably, four unrelated patients were found by next generation sequencing to have the same heterozygous mutation in an essential donor splice site of PIK3R1 (NM_181523.2:c.1425 + 1G > A) found in three prior reports. All four had the Hyper IgM syndrome, lymphadenopathy and short stature, and one also had SHORT syndrome. They were investigated with in vitro immune studies, RT-PCR, and immunoblotting studies of the mutation's effect on mTOR pathway signaling. All patients had very low percentages of memory B cells and class-switched memory B cells and reduced numbers of naïve CD4+ and CD8+ T cells. RT-PCR confirmed the presence of both an abnormal 273 base-pair (bp) size and a normal 399 bp size band in the patient and only the normal band was present in the parents. Following anti-CD40 stimulation, patient's EBV-B cells displayed higher levels of S6 phosphorylation (mTOR complex 1 dependent event), Akt phosphorylation at serine 473 (mTOR complex 2 dependent event), and Akt phosphorylation at threonine 308 (PI3K/PDK1 dependent event) than controls, suggesting elevated mTOR signaling downstream of CD40. These observations suggest that amino acids 435-474 in PIK3R1 are important for its stability and also its ability to restrain PI3K activity. Deletion of Exon 11 leads to constitutive activation of PI3K signaling. This is the first report of this mutation and immunologic abnormalities in SHORT syndrome.
Resumo:
Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP-than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA- CCR7-) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age.
Resumo:
Because only 10% of individuals infected with Mycobacterium tuberculosis will eventually develop disease, antigens that are recognized differently by the immune systems of infected healthy and diseased subjects may constitute potential vaccine candidates. Here, the heparin-binding hemagglutinin adhesin (HBHA) is identified as such an antigen. Lymphocytes from 60% of healthy infected individuals (n=25) produced interferon (IFN)-gamma after stimulation with HBHA, compared with only 4% of patients with active tuberculosis (n=24). In the responders, both CD4(+) and CD8(+) cells secreted HBHA-specific IFN-gamma, and the antigen was presented by both major histocompatibility complex class I and II molecules. In contrast to the reduced ability of patients with tuberculosis to produce HBHA-specific IFN-gamma, most of them (82%) produced anti-HBHA antibodies, compared with 36% of the infected healthy subjects. These observations indicate that HBHA is recognized differently by the immune systems of patients with tuberculosis and infected healthy individuals and might provide a marker for protection against tuberculosis.
Resumo:
Neonatal immaturity of the immune system is currently believed to generally limit the induction of immune responses to vaccine Ags and to skew them toward type 2 responses. We demonstrated here that Bordetella pertussis infection in very young infants (median, 2 mo old) as well as the first administration of whole-cell pertussis vaccine induces B. pertussis Ag-specific IFN-gamma secretion by the PBMC of these infants. IFN-gamma was secreted by both CD4(+) and CD8(+) T lymphocytes, and the levels of Ag-induced IFN-gamma secretion did not correlate with the age of the infants. Appearance of the specific Th-1 cell-mediated immunity was accompanied by a general shift of the cytokine secretion profile of these infants toward a stronger Th1 profile, as evidenced by the response to a polyclonal stimulation. We conclude that the immune system of 2-mo-old infants is developmentally mature enough to develop Th1 responses in vivo upon infection by B. pertussis or vaccination with whole-cell pertussis vaccines.
Resumo:
Interactions of Mycobacterium tuberculosis with macrophages have long been recognized to be crucial to the pathogenesis of tuberculosis. The role of non-phagocytic cells is less well known. We have discovered a M. tuberculosis surface protein that interacts specifically with non-phagocytic cells, expresses hemagglutination activity and binds to sulfated glycoconjugates. It is therefore called heparin-binding hemagglutinin (HBHA). HBHA-deficient M. tuberculosis mutant strains are significantly impaired in their ability to disseminate from the lungs to other tissues, suggesting that the interaction with non-phagocytic cells, such as pulmonary epithelial cells, may play an important role in the extrapulmonary dissemination of the tubercle bacillus, one of the key steps that may lead to latency. Latently infected human individuals mount a strong T cell response to HBHA, whereas patients with active disease do not, suggesting that HBHA is a good marker for the immunodiagnosis of latent tuberculosis, and that HBHA-specific Th1 responses may contribute to protective immunity against active tuberculosis. Strong HBHA-mediated immuno-protection was shown in mouse challenge models. HBHA is a methylated protein and its antigenicity in latently infected subjects, as well as its protective immunogenicity strongly depends on the methylation pattern of HBHA. In both mice and man, the HBHA-specific IFN-gamma was produced by both the CD4(+) and the CD8(+) T cells. Furthermore, the HBHA-specific CD8(+) T cells expressed bactericidal and cytotoxic activities to mycobacteria-infected macrophages. This latter activity is most likely perforin mediated. Together, these observations strongly support the potential of methylated HBHA as an important component in future, acellular vaccines against tuberculosis.
Resumo:
RATIONALE: Tuberculosis (TB) remains a major cause of mortality. A better understanding of the immune responses to mycobacterial antigens may be helpful to develop improved vaccines and diagnostics. OBJECTIVE: The mycobacterial antigen heparin-binding-hemagglutinin (HBHA) induces strong interferon-gamma (IFN-gamma) responses by circulating lymphocytes from Mycobacterium tuberculosis latently infected subjects, and low responses associated with CD4(+) regulatory T (Treg) cells in TB patients. Here, we investigated HBHA-specific IFN-gamma responses at the site of the TB disease. METHODS: Bronchoalveolar lavages, pleural fluids and blood were prospectively collected from 61 patients with a possible diagnosis of pulmonary and/or pleural TB. HBHA-specific IFN-gamma production was analyzed by flow cytometry and ELISA. The suppressive effect of pleural Treg cells was investigated by depletion experiments. MEASUREMENTS AND MAIN RESULTS: The percentages of HBHA-induced IFN-gamma(+) alveolar and pleural lymphocytes were higher for pulmonary (P<0.0001) and for pleural (P<0.01) TB than for non-TB controls. Local CD4(+) and CD8(+) T cells produced the HBHA-specific IFN-gamma. This local secretion was not suppressed by Treg lymphocytes, contrasting with previously reported data on circulating lymphocytes. CONCLUSION: TB patients display differential effector and regulatory T cell responses to HBHA in local and circulating lymphocytes with a predominant effector CD4(+) and CD8(+) response locally, compared to a predominant Treg response among circulating lymphocytes. These findings may be helpful for the design of new vaccines against TB, and the detection of HBHA-specific T cells at the site of the infection may be a promising tool for the rapid diagnosis of active TB.
Resumo:
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
OBJECTIVES: To evaluate the immune reconstitution in HIV-1-infected children in whom highly active antiretroviral therapy (HAART) controlled viral replication and to assess the existence of a relation between the magnitude of this restoration and age. METHODS: All HIV-1-infected children in whom a new HAART decreased plasma viral load below 400 copies/ml after 3 months of therapy were prospectively enrolled in a study of their immune reconstitution. Viral load, lymphocyte phenotyping, determination of CD4+ and CD8+ T cell receptor repertoires and proliferative responses to mitogens and recall antigens were assessed every 3 months during 1 year. RESULTS: Nineteen children were evaluated. Naive and memory CD4+ percentages were already significantly increased after 3 months of HAART. In contrast to memory CD4+ percentages, naive CD4+ percentages continued to rise until 12 months. Age at baseline was inversely correlated with the magnitude of the rise in naive CD4+ cells after 3, 6 and 9 months of therapy but not after 12 months. Although memory and activated CD8+ cells were already decreasing after 3 months, abnormalities of the CD8 T cell receptor repertoire and activation of CD8+ cells persisted at 1 year. HAART increased the response to mitogens as early as 3 months after starting therapy. CONCLUSIONS: In children the recovery of naive CD4+ cells occurs more rapidly if treatment is started at a younger age, but after 1 year of viral replication control, patients of all ages have achieved the same level of restoration. Markers of chronic activation in CD8+ cells persist after 1 year of HAART.
Resumo:
BACKGROUND & AIMS: Few data are available on the potential role of T lymphocytes in experimental acute pancreatitis. The aim of this study was to characterize their role in the inflammatory cascade of acute pancreatitis. METHODS: To type this issue, acute pancreatitis was induced by repeated injections of cerulein in nude mice and in vivo CD4(+) or CD8(+) T cell-depleted mice. The role of T lymphocyte-costimulatory pathways was evaluated using anti-CD40 ligand or anti-B7-1 and -B7-2 monoclonal blocking antibodies. The role of Fas-Fas ligand was explored using Fas ligand-targeted mutant (generalized lymphoproliferative disease) mice. Severity of acute pancreatitis was assessed by serum hydrolase levels and histology. Intrapancreatic interleukin 12, interferon gamma, Fas ligand, and CD40 ligand messenger RNA were detected by reverse-transcription polymerase chain reaction. Intrapancreatic T lymphocytes were identified by immunohistochemistry. RESULTS: In control mice, T cells, most of them CD4(+) T cells, are present in the pancreas and are recruited during acute pancreatitis. In nude mice, histological lesions and serum hydrolase levels are significantly decreased. T-lymphocyte transfer into nude mice partially restores the severity of acute pancreatitis and intrapancreatic interferon gamma, interleukin 12, and Fas ligand gene transcription. The severity of pancreatitis is also reduced by in vivo CD4(+) (but not CD8(+)) T-cell depletion and in Fas ligand-targeted mutant mice. Blocking CD40-CD40 ligand or B7-CD28 costimulatory pathways has no effect on the severity of pancreatitis. CONCLUSIONS: T lymphocytes, particularly CD4(+) T cells, play a pivotal role in the development of tissue injury during acute experimental pancreatitis in mice.
Resumo:
Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules – comprised of MICA and MICB – are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1α mRNA using siRNA technology resulted in inhibition of HIF-1α accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1α also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.
Resumo:
Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.