947 resultados para Systems dynamics
Resumo:
A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the avast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed. The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the case of the fully frustrated model, we also find the intriguing result that critical clusters consist of self-avoiding walk at the theta point.
Resumo:
This thesis is a compilation of projects to study sediment processes recharging debris flow channels. These works, conducted during my stay at the University of Lausanne, focus in the geological and morphological implications of torrent catchments to characterize debris supply, a fundamental element to predict debris flows. Other aspects of sediment dynamics are considered, e.g. the coupling headwaters - torrent, as well as the development of a modeling software that simulates sediment transfer in torrent systems. The sediment activity at Manival, an active torrent system of the northern French Alps, was investigated using terrestrial laser scanning and supplemented with geostructural investigations and a survey of sediment transferred in the main torrent. A full year of sediment flux could be observed, which coincided with two debris flows and several bedload transport events. This study revealed that both debris flows generated in the torrent and were preceded in time by recharge of material from the headwaters. Debris production occurred mostly during winter - early spring time and was caused by large slope failures. Sediment transfers were more puzzling, occurring almost exclusively in early spring subordinated to runoffconditions and in autumn during long rainfall. Intense rainstorms in summer did not affect debris storage that seems to rely on the stability of debris deposits. The morpho-geological implication in debris supply was evaluated using DEM and field surveys. A slope angle-based classification of topography could characterize the mode of debris production and transfer. A slope stability analysis derived from the structures in rock mass could assess susceptibility to failure. The modeled rockfall source areas included more than 97% of the recorded events and the sediment budgets appeared to be correlated to the density of potential slope failure. This work showed that the analysis of process-related terrain morphology and of susceptibility to slope failure document the sediment dynamics to quantitatively assess erosion zones leading to debris flow activity. The development of erosional landforms was evaluated by analyzing their geometry with the orientations of potential rock slope failure and with the direction of the maximum joint frequency. Structure in rock mass, but in particular wedge failure and the dominant discontinuities, appear as a first-order control of erosional mechanisms affecting bedrock- dominated catchment. They represent some weaknesses that are exploited primarily by mass wasting processes and erosion, promoting not only the initiation of rock couloirs and gullies, but also their propagation. Incorporating the geological control in geomorphic processes contributes to better understand the landscape evolution of active catchments. A sediment flux algorithm was implemented in a sediment cascade model that discretizes the torrent catchment in channel reaches and individual process-response systems. Each conceptual element includes in simple manner geomorphological and sediment flux information derived from GIS complemented with field mapping. This tool enables to simulate sediment transfers in channels considering evolving debris supply and conveyance, and helps reducing the uncertainty inherent to sediment budget prediction in torrent systems. Cette thèse est un recueil de projets d'études des processus de recharges sédimentaires des chenaux torrentiels. Ces travaux, réalisés lorsque j'étais employé à l'Université de Lausanne, se concentrent sur les implications géologiques et morphologiques des bassins dans l'apport de sédiments, élément fondamental dans la prédiction de laves torrentielles. D'autres aspects de dynamique sédimentaire ont été abordés, p. ex. le couplage torrent - bassin, ainsi qu'un modèle de simulation du transfert sédimentaire en milieu torrentiel. L'activité sédimentaire du Manival, un système torrentiel actif des Alpes françaises, a été étudiée par relevés au laser scanner terrestre et complétée par une étude géostructurale ainsi qu'un suivi du transfert en sédiments du torrent. Une année de flux sédimentaire a pu être observée, coïncidant avec deux laves torrentielles et plusieurs phénomènes de charriages. Cette étude a révélé que les laves s'étaient générées dans le torrent et étaient précédées par une recharge de débris depuis les versants. La production de débris s'est passée principalement en l'hiver - début du printemps, causée par de grandes ruptures de pentes. Le transfert était plus étrange, se produisant presque exclusivement au début du printemps subordonné aux conditions d'écoulement et en automne lors de longues pluies. Les orages d'été n'affectèrent guère les dépôts, qui semblent dépendre de leur stabilité. Les implications morpho-géologiques dans l'apport sédimentaire ont été évaluées à l'aide de MNT et études de terrain. Une classification de la topographie basée sur la pente a permis de charactériser le mode de production et transfert. Une analyse de stabilité de pente à partir des structures de roches a permis d'estimer la susceptibilité à la rupture. Les zones sources modélisées comprennent plus de 97% des chutes de blocs observées et les bilans sédimentaires sont corrélés à la densité de ruptures potentielles. Ce travail d'analyses des morphologies du terrain et de susceptibilité à la rupture documente la dynamique sédimentaire pour l'estimation quantitative des zones érosives induisant l'activité torrentielle. Le développement des formes d'érosion a été évalué par l'analyse de leur géométrie avec celle des ruptures potentielles et avec la direction de la fréquence maximale des joints. Les structures de roches, mais en particulier les dièdres et les discontinuités dominantes, semblent être très influents dans les mécanismes d'érosion affectant les bassins rocheux. Ils représentent des zones de faiblesse exploitées en priorité par les processus de démantèlement et d'érosion, encourageant l'initiation de ravines et couloirs, mais aussi leur propagation. L'incorporation du control géologique dans les processus de surface contribue à une meilleure compréhension de l'évolution topographique de bassins actifs. Un algorithme de flux sédimentaire a été implémenté dans un modèle en cascade, lequel divise le bassin en biefs et en systèmes individuels répondant aux processus. Chaque unité inclut de façon simple les informations géomorpologiques et celles du flux sédimentaire dérivées à partir de SIG et de cartographie de terrain. Cet outil permet la simulation des transferts de masse dans les chenaux, considérants la variabilité de l'apport et son transport, et aide à réduire l'incertitude liée à la prédiction de bilans sédimentaires torrentiels. Ce travail vise très humblement d'éclairer quelques aspects de la dynamique sédimentaire en milieu torrentiel.
Resumo:
We study the dynamics of density fluctuations in purely diffusive systems away from equilibrium. Under some conditions the static density correlation function becomes long ranged. We then analyze this behavior in the framework of nonequilibrium fluctuating hydrodynamics.
Resumo:
We propose a method to analytically show the possibility for the appearance of a maximum in the signal-to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based on the reduction to a one-dimensional dynamics in the adiabatic limit and in the topology of the phase space of the systems under study. Its application to other nonpotential systems is also discussed.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
Organisations in Multi-Agent Systems (MAS) have proven to be successful in regulating agent societies. Nevertheless, changes in agents' behaviour or in the dynamics of the environment may lead to a poor fulfilment of the system's purposes, and so the entire organisation needs to be adapted. In this paper we focus on endowing the organisation with adaptation capabilities, instead of expecting agents to be capable of adapting the organisation by themselves. We regard this organisational adaptation as an assisting service provided by what we call the Assistance Layer. Our generic Two Level Assisted MAS Architecture (2-LAMA) incorporates such a layer. We empirically evaluate this approach by means of an agent-based simulator we have developed for the P2P sharing network domain. This simulator implements 2-LAMA architecture and supports the comparison between different adaptation methods, as well as, with the standard BitTorrent protocol. In particular, we present two alternatives to perform norm adaptation and one method to adapt agents'relationships. The results show improved performance and demonstrate that the cost of introducing an additional layer in charge of the system's adaptation is lower than its benefits.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
Considering teams as complex adaptive systems (CAS) this study deals with changes in team effectiveness over time in a specific context: professional basketball. The sample comprised 23 basketball teams whose outcomes were analysed over a 12-year period according to two objective measures. The results reveal that all the teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship was also found between teams showing low-dimensional chaotic dynamics and better outcomes, supporting the idea of healthy variability in organizational behaviour. The stability of the squad was likewise found to influence team outcomes, although it was not associated with the chaotic dynamics in team effectiveness. It is concluded that studying teams as CAS enables fluctuations in team effectiveness to be explained, and that the techniques derived from nonlinear dynamical systems, developed specifically for the study of CAS, are useful for this purpose.
Resumo:
The aims of this study are to consider the experience of flow from a nonlinear dynamics perspective. The processes and temporal nature of intrinsic motivation and flow, would suggest that flow experiences fluctuate over time in a dynamical fashion. Thus it can be argued that the potential for chaos is strong. The sample was composed of 20 employees (both full and part time) recruited from a number of different organizations and work backgrounds. The Experience Sampling Method (ESM) was used for data collection. Once obtained the temporal series, they were subjected to various analyses proper to the com- plexity theory (Visual Recurrence Analysis and Surrogate Data Analysis). Results showed that in 80% of the cases, flow presented a chaotic dynamic, in that, flow experiences delineated a complex dynamic whose patterns of change were not easy to predict. Implications of the study, its limitations and future research are discussed.
Resumo:
Public goods cooperation is common in microbes, and there is much interest in understanding how such traits evolve. Research in recent years has identified several important factors that shape the evolutionary dynamics of such systems, yet few studies have investigated scenarios involving interactions between multiple public goods. Here, we offer general predictions about the evolutionary trajectories of two public goods traits having positive, negative or neutral regulatory influence on one another's expression, and we report on a test of some of our predictions in the context of Pseudomonas aeruginosa's production of two interlinked iron-scavenging siderophores. First, we confirmed that both pyoverdine and pyochelin siderophores do operate as public goods under appropriate environmental conditions. We then tracked their production in lines experimentally evolved under different iron-limitation regimes known to favour different siderophore expression profiles. Under strong iron limitation, where pyoverdine represses pyochelin, we saw a decline in pyoverdine and a concomitant increase in pyochelin - consistent with expansion of pyoverdine-defective cheats derepressed for pyochelin. Under moderate iron limitation, pyochelin declined - again consistent with an expected cheat invasion scenario - but there was no concomitant shift in pyoverdine because cross-suppression between the traits is unidirectional only. Alternating exposure to strong and moderate iron limitation caused qualitatively similar though lesser shifts compared to the constant-environment regimes. Our results confirm that the regulatory interconnections between public goods traits can significantly modulate the course of evolution, yet also suggest how we can start to predict the impacts such complexities will have on phenotypic divergence and community stability.
Resumo:
Tropical grasslands under lowland soils are generally underutilized and the litter of forage legumes may be used to recover these degraded pastures. The objective of this work was to study the dynamics of litter decomposition of Arachis pintoi (pinto peanut), Hyparrhenia rufa (thatching grass) and a mixture of both species in a lowland soil. These treatments were analyzed in three areas: grass monoculture, legume monoculture and legume intercropped with the grass during the dry and wet seasons. Litter bags containing the legume, grass or a mixture of both species were incubated to estimate the decomposition rate and microorganism colonization. Decomposition constants (K) and litter half-lives (T1/2) were estimated by an exponential model whereas number of microorganisms in specific media were determined by plate dilution. The decomposition rate, release of nutrients and microorganisms number, especially bacteria, increased when pinto peanut was added to thatching grass, influenced by favorable lignin/N and C/N ratios in legume litter. When pinto peanut litter was incubated in the grass plots, 50% N and P was released within about 135 days in the dry season and in the wet season, the equivalent release occurred within 20 days. These results indicate that A. pintoi has a great potential for nutrient recycling via litter and can be used to recover degraded areas.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems