886 resultados para Systems and Information Theory
Resumo:
Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.
Resumo:
The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa ), soybean (Glycine max ), common vetch (Vicia sativa ), maize (Zea mays ), fodder radish (Raphanus sativus ), and black beans (Phaseolus vulgaris ). The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.
Resumo:
Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means that the pixels of a given image can be decomposed into sets, the fractal components of the image, with well-defined scaling exponents [Turiel and Parga, Neural Comput. 12, 763 (2000)]. Here it is shown that hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of behavior. A precise measure of the informational relevance of the fractal components is also given, and it is shown that there are important differences between the intrinsically redundant red-green-blue system and the decorrelated one defined in Ruderman, Cronin, and Chiao [J. Opt. Soc. Am. A 15, 2036 (1998)].
Resumo:
Soil compaction is one of the main degradation causes, provoked by inappropriate agricultural practices that override the limitations of the soil physical properties. Preconsolidation pressure and penetration resistance have proved effective as alternative to assess and identify soil compaction. Based on the interpretation of these physico-mechanical parameters, compaction can be prevented with a better adjusted soil management. This study was performed to generate preconsolidation pressure and penetration resistance models for Latososlo Vermelho-Amarelo distrófico (Oxisol) under various managements and uses; and evaluate which of these would lead to degradation or degradation susceptibility. The study was carried out in Curvelo, MG. Two managements and one land use were evaluated: no-tillage, sheep grazing and natural forest. Undisturbed soil samples collected from the 0-5 cm layer were subjected to uniaxial compression and penetration resistance tests. Preconsolidation pressure models for forest and no-tillage soils were not statistically different, demonstrating a low degradation potential in no-tillage systems. Preconsolidation pressure was higher in soil under sheep grazing at all water retention tensions and penetration resistance values were higher than under native forest indicating animal trampling as a potential degradation factor. Neither management presented penetration resistance values above 2 MPa at field capacity moisture. Only under sheep grazing the soil penetrability was near 2 MPa at field capacity and values greater than 2 MPa at 0.2 kg kg-1.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.
Resumo:
Newsletter from the University of Iowa School of Library and Information Science.