895 resultados para System failures (Engineering) -- Location


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed, built, and tested an early prototype of a novel subxiphoid access system intended to facilitate epicardial electrophysiology, but with possible applications elsewhere in the body. The present version of the system consists of a commercially available insertion needle, a miniature pressure sensor and interconnect tubing, read-out electronics to monitor the pressures measured during the access procedure, and a host computer with user-interface software. The nominal resolution of the system is <0.1 mmHg, and it has deviations from linearity of <1%. During a pilot series of human clinical studies with this system, as well as in an auxiliary study done with an independent method, we observed that the pericardial space contained pressure-frequency components related to both the heart rate and respiratory rate, while the thorax contained components related only to the respiratory rate, a previously unobserved finding that could facilitate access to the pericardial space. We present and discuss the design principles, details of construction, and performance characteristics of this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although various techniques have been used for breast conservation surgery reconstruction, there are few studies describing a logical approach to reconstruction of these defects. The objectives of this study were to establish a classification system for partial breast defects and to develop a reconstructive algorithm. Methods: The authors reviewed a 7-year experience with 209 immediate breast conservation surgery reconstructions. Mean follow-up was 31 months. Type I defects include tissue resection in smaller breasts (bra size A/B), including type IA, which involves minimal defects that do not cause distortion; type III, which involves moderate defects that cause moderate distortion; and type IC, which involves large defects that cause significant deformities. Type II includes tissue resection in medium-sized breasts with or without ptosis (bra size C), and type III includes tissue resection in large breasts with ptosis (bra size D). Results: Eighteen percent of patients presented type I, where a lateral thoracodorsal flap and a latissimus dorsi flap were performed in 68 percent. Forty-five percent presented type II defects, where bilateral mastopexy was performed in 52 percent. Thirty-seven percent of patients presented type III distortion, where bilateral reduction mammaplasty was performed in 67 percent. Thirty-five percent of patients presented complications, and most were minor. Conclusions: An algorithm based on breast size in relation to tumor location and extension of resection can be followed to determine the best approach to reconstruction. The authors` results have demonstrated that the complications were similar to those in other clinical series. Success depends on patient selection, coordinated planning with the oncologic surgeon, and careful intraoperative management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to characterize the structure of the beak of Toco Toucan (Ramphastos toco) and to investigate means for arresting fractures in the rhinotheca using acrylic resin. The structure of the rhamphastid bill has been described as a sandwich structured composite having a thin exterior comprised of keratin and a thick foam core constructed of mineralized collagenous rods (trabeculae). The keratinous rhamphotheca consists of superposed polygonal scales (approximately 50 pm in diameter and 1 mu m in thickness). In order to simulate the orientation of loading to which the beak is subjected during exertion of bite force, for example, we conducted flexure tests on the dorso-ventral axis of the maxilla. The initially intact (without induced fracture) beak fractured in the central portion when subjected to a force of 270 N, at a displacement of 23 mm. The location of this fracture served as a reference for the fractures induced in other beaks tested. The second beak was fractured and repaired by applying resin on both lateral surfaces. The repaired maxilla sustained a force of 70 N with 6.5 mm deflection. The third maxilla was repaired similarly except that it was conditioned in acid for 60s prior to fixation with resin. It resisted a force of up to 63 N at 6 mm of deflection. The experimental results were compared with finite element calculations for unfractured beak in bending configuration. The repaired specimens were found to have strength equal to only one third of the intact beak. Finite element simulations allow visualization of how the beak system (sandwich shell and cellular core) sustains high flexural strength. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control-G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water-G3) or using a chemo-mechanical method (Carisolv-G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey`s test (P <= 0.05). The samples of sound dentine presented higher bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.