977 resultados para Supply network mapping
Resumo:
Purpose: This paper aims to explore the role of internal and external knowledgebased linkages across the supply chain in achieving better operational performance. It investigates how knowledge is accumulated, shared, and applied to create organization-specific knowledge resources that increase and sustain the organization's competitive advantage. Design/methodology/approach: This paper uses a single case study with multiple, embedded units of analysis, and the social network analysis (SNA) to demonstrate the impact of internal and external knowledge-based linkages across multiple tiers in the supply chain on the organizational operational performance. The focal company of the case study is an Italian manufacturer supplying rubber components to European automotive enterprises. Findings: With the aid of the SNA, the internal knowledge-based linkages can be mapped and visualized. We found that the most central nodes having the most connections with other nodes in the linkages are the most crucial members in terms of knowledge exploration and exploitation within the organization. We also revealed that the effective management of external knowledge-based linkages, such as buyer company, competitors, university, suppliers, and subcontractors, can help improve the operational performance. Research limitations/implications: First, our hypothesis was tested on a single case. The analysis of multiple case studies using SNA would provide a deeper understanding of the relationship between the knowledge-based linkages at all levels of the supply chain and the integration of knowledge. Second, the static nature of knowledge flows was studied in this research. Future research could also consider ongoing monitoring of dynamic linkages and the dynamic characteristic of knowledge flows. Originality/value: To the best of our knowledge, the phrase 'knowledge-based linkages' has not been used in the literature and there is lack of investigation on the relationship between the management of internal and external knowledge-based linkages and the operational performance. To bridge the knowledge gap, this paper will show the importance of understanding the composition and characteristics of knowledge-based linkages and their knowledge nodes. In addition, this paper will show that effective management of knowledge-based linkages leads to the creation of new knowledge and improves organizations' operational performance.
Resumo:
Purpose: The purpose of the research described in this paper is to disentangle the rhetoric from the reality in relation to supply chain management (SCM) adoption in practice. There is significant evidence of a divergence between theory and practice in the field of SCM. Research Approach: The authors’ review of the extant SCM literature highlighted a lack of replication studies in SCM, leading to the concept of refined replication being developed. The authors conducted a refined replication of the work of Sweeney et al. (2015) where a new SCM definitional construct – the Four Fundamentals – was proposed. The work presented in this article refines the previous study but adopts the same three-phase approach: focussed interviews, a questionnaire survey, and focus groups. This article covers the second phase of the refined replication study and describes an integrated research design of a questionnaire research to be undertaken in Britain. Findings and Originality: The article presents an integrated research design of a questionnaire research with emphases on the refined replication of previous work of Sweeney et al. (2015) carried out in Ireland and adapting it to the British context. Research Impact: The authors introduce the concept of refined replication in SCM research. This allows previous research to be built upon in order to test understanding of SCM theory and its practical implementation - based on the Four Fundamentals construct - among SCM professionals in Britain. Practical Impact: The article presents the integrated research design of a questionnaire research that may be used in similar studies.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
This paper is concerned with strategic optimization of a typical industrial chemical supply chain, which involves a material purchase and transportation network, several manufacturing plants with on-site material and product inventories, a product transportation network and several regional markets. In order to address large uncertainties in customer demands at the different regional markets, a novel robust scenario formulation, which has been developed by the authors recently, is tailored and applied for the strategic optimization. Case study results show that the robust scenario formulation works well for this real industrial supply chain system, and it outperforms the deterministic formulation and the classical scenario-based stochastic programming formulation by generating better expected economic performance and solutions that are guaranteed to be feasible for all uncertainty realizations. The robust scenario problem exhibits a decomposable structure that can be taken advantage of by Benders decomposition for efficient solution, so the application of Benders decomposition to the solution of the strategic optimization is also discussed. The case study results show that Benders decomposition can reduce the solution time by almost an order of magnitude when the number of scenarios in the problem is large.
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
The objective of this paper is to conceptualize Supply Chain Resilience (SCRes) and identify which supply chain capabilities can support the containment of disruptions and how these capabilities affect SCRes. Through a systematic and structured review of literature, this paper provides insights into the conceptualization and research methodological background of the SCM field. A total of one hundred and thirty four carefully selected refereed journal articles were systematically analyzed leading to the introduction of a novel definition for SCRes, which the authors view as the as “the ability to proactively plan and design the Supply Chain network for anticipating unexpected disruptive (negative) events, respond adaptively to disruptions while maintaining control over structure and function and transcending to a post-event robust state of operations, if possible, more favorable than the one prior to the event, thus gaining competitive advantage”. Finally, a critical examination of existing conceptual frameworks for understanding the relationships between the SCRes concept and its identified formative elements, is taking place.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
Based on an original and comprehensive database of all feature fiction films produced in Mercosur between 2004 and 2012, the paper analyses whether the Mercosur film industry has evolved towards an integrated and culturally more diverse market. It provides a summary of policy opportunities in terms of integration and diversity, emphasizing the limiter role played by regional policies. It then shows that although the Mercosur film industry remains rather disintegrated, it tends to become more integrated and culturally more diverse. From a methodological point of view, the combination of Social Network Analysis and the Stirling Model opens up interesting research tracks to analyse creative industries in terms of their market integration and their cultural diversity.
Resumo:
This deliverable summarizes, validates and explains the purpose and concept behind the RAGE knowledge and innovation management platform as a self-sustainable Ecosystem, supporting innovation processes in the Applied Gaming (AG) industry. The Ecosystem portal will be developed with particular consideration of the demand and requirements of small and medium sized game developing companies, education providers and related stakeholders like AG researchers and AG end-users. The innovation potential of the new platform underlies the following factors: a huge, mostly entire collection of community specific knowledge (e.g., content like media objects, software components and best practices), a structured approach of knowledge access, search and browse, collaboration tools as well as social network analysis tools to foster efficient knowledge creation and transformation processes into marketable technology assets. The deliverable provides an overview of the current status and the remaining work to come, preceding the final version in month 48 of the RAGE project.
Resumo:
PURPOSE: Myeloma is a clonal malignancy of plasma cells. Poor-prognosis risk is currently identified by clinical and cytogenetic features. However, these indicators do not capture all prognostic information. Gene expression analysis can be used to identify poor-prognosis patients and this can be improved by combination with information about DNA-level changes. EXPERIMENTAL DESIGN: Using single nucleotide polymorphism-based gene mapping in combination with global gene expression analysis, we have identified homozygous deletions in genes and networks that are relevant to myeloma pathogenesis and outcome. RESULTS: We identified 170 genes with homozygous deletions and corresponding loss of expression. Deletion within the "cell death" network was overrepresented and cases with these deletions had impaired overall survival. From further analysis of these events, we have generated an expression-based signature associated with shorter survival in 258 patients and confirmed this signature in data from two independent groups totaling 800 patients. We defined a gene expression signature of 97 cell death genes that reflects prognosis and confirmed this in two independent data sets. CONCLUSIONS: We developed a simple 6-gene expression signature from the 97-gene signature that can be used to identify poor-prognosis myeloma in the clinical environment. This signature could form the basis of future trials aimed at improving the outcome of poor-prognosis myeloma.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
An important aspect of sustainability is to maintain biodiversity and ecosystem functioning while improving human well-being. For this, the ecosystem service (ES) approach has the potential to bridge the still existing gap between ecological management and social development, especially by focusing on trade-offs and synergies between ES and between their beneficiaries. Several frameworks have been proposed to account for trade-offs and synergies between ES, and between ES and other components of social-ecological systems. However, to date, insufficient explicit attention has been paid to the three facets encompassed in the ES concept, namely potential supply, demand, and use, leading to incomplete descriptions of ES interactions. We expand on previous frameworks by proposing a new influence network framework (INF) based on an explicit consideration of influence relationships between these three ES facets, biodiversity, and external driving variables. We tested its ability to provide a comprehensive view of complex social-ecological interactions around ES through a consultative process focused on environmental management in the French Alps. We synthetized the interactions mentioned during this consultative process and grouped variables according to their overall propensity to influence or be influenced by the system. The resulting directed sequence of influences distinguished between: (1) mostly influential variables (dynamic social variables and ecological state variables), (2) target variables (provisioning and cultural services), and (3) mostly impacted variables (regulating services and biodiversity parameters). We discussed possible reasons for the discrepancies between actual and perceived influences and proposed options to overcome them. We demonstrated that the INF holds the potential to deliver collective assessments of ES relations by: (1) including ecological as well as social aspects, (2) providing opportunities for colearning processes between stakeholder groups, and (3) supporting communication about complex social-ecological systems and consequences for environmental management.