946 resultados para Supersymmetry Breaking
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.
Resumo:
We apply the supersymmetry approach to one-dimensional quantum systems with spatially dependent mass, by including their ordering ambiguities dependence. In this way we extend the results recently reported in the literature. Furthermore, we point out a connection between these systems and others with constant masses. This is done through convenient transformations in the coordinates and wave functions.
Resumo:
We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.
Resumo:
The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly.
Resumo:
The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schodinger equation for a bidimensional potential. This potential can be applied in several systens in physical and chemistry context, for instance, it can be used to study benzene molecule.
Resumo:
The Schrodinger equation with the truncated Coulomb potential is solved using the supersymmetric quantum mechanics formalism, with and without the cutoff in the angular momentum potential. We obtain some analytical eigenfunctions and eigenvalues for particular values of the cutoff parameter.