287 resultados para Subterranean termite
Resumo:
Subterranean area with block stone walls and ceiling made of tree limbs. Caption; "Reinforced Japanese cave."
Resumo:
There exists a major cost issue as regards termite damage to wooden structures. A factor in this cost has been the increasing trend towards slab-on-ground construction. Current literature has been reviewed in relation to concerns about the possible public/environmental health consequences of the repeated use of termiticides in large quantities. The previous, current and projected future use patterns of termiticides are reviewed in the context of techniques appropriate for termite control and treatment priorities. The phasing out of organochlorine termiticides in Australia was undertaken to minimise impact of these substances on the environment and to a lesser extent on public health. These persistent chemicals were replaced by substances with high activity but relatively low persistence in the soil. There has also been an increase in the use of alternative methods (e.g. physical barriers) for the control of termites. The transition away from organochlorine termiticides has led to a realisation that significant information gaps exist with regard to replacement chemicals and other technologies. Although relatively persistent, the organochlorine chemicals have a limited lifespan in soils. Their concentrations are gradually attenuated by processes such as transport away from the point of application and biodegradation. Wooden structures originally treated with these substances will, with the passing of time, be at risk of termite infestation. The only available option is re-treatment with chemicals currently registered for termite control. Thus, there are likely to be substantial future increases associated with the cost of re-treatment and repairs of older slab-on-ground dwellings. More information is required on Australian termite biology, taxonomy and ecology. The risks of termite infestation need to be evaluated, both locally and nationally so that susceptible or high risk areas, structures and building types can be identified and preventive measures taken in terms of design and construction. Building regulations and designs need to be able to reduce or eliminate high-risk housing; and eliminate or reduce conditions that are attractive to termites and/or facilitate termite infestation.
Resumo:
Rhizoctonia solani AG-2-2 was isolated from wilting and dying plants of sulla ( Hedysarum coronarium), which is currently being assessed in eastern and southern Australia for its potential as a pasture and forage legume. Infected plants in the field had extensive rotting of the taproot, lateral roots and crown. Koch's postulates were fulfilled using three inoculation methods. The disease may pose a considerable threat to the potential use of H. coronarium in the dryland, grazing farming systems of Australia, with resistance offering the most viable option for minimising its impact.
Resumo:
International donors and state bureaucrats in the developing world have promoted decentralization reform as the primary means to achieve equitable, efficient and sustainable natural resource management. Relatively few studies, however, consider the power interests at stake. Why do state agencies decentralize power, what political patterns unfold, and how do outcomes affect the responses of resource users? This paper explores decentralization reform by investigating the political processes behind the Philippine state's decisions to transfer authority over national parks management to local government units. Drawing on a case of devolved management at Puerto Princesa Subterranean River National Park, Palawan Island, we examine how political motives situated at different institutional scales affect the broader process of decentralization, the structure of management institutions, and overall livelihood security. We demonstrate how power struggles between the Philippine state and City Government of Palawan over the right to manage the national park have impacted the livelihood support offered by community-based conservation. We conclude that decentralization may offer empowering resu
Resumo:
The foraging process of location and exploitation of food in complex termite societies is in part reliant upon unequal division of specific tasks amongst its members (polyethism). To conduct studies assessing the role of individuals in foraging activities it is necessary to have descriptors of worker caste and instar. Here we provide biometric descriptors of specific caste and instar for worker caste and instars of Microcerotermes turneri (Froggatt) (Termitidae: Termitinae) for the worker castes (male and female) for the identification of individuals in laboratory assays applicable across multiple nests. The use of head width for determining sex of workers was successful across multiple nests. The length of the first three flagellum segments of the antenna and tibia three could be used to determine worker instar.
Resumo:
Hydrocarbon migration pathways and organic mineral matter associations were used to identify brine pathways in Paleoproterozic to early Mesoproterozoic rocks from the Lawn Hill platform, Mount Isa. Several types of organic matter are identified, and their thermal imprints are used to reconstruct the thermal history of the northern to central parts of the Isa superbasin. Three major thermal hydrothermal episodes are recognized from the organic maturation studies. Isotherm plots on a 175-km-long structural-sedimentological north-south section of the Isa superbasin highlight specific fault systems that acted as hot fluid conduits during the geologic history of the basin. Some of these systems indicate continuing activity into the south Nicholson basin, supported by the presence of low reflectance (type B) bitumen. This bitumen has not been overprinted by later hydrothermal episodes and therefore represents the latest thermal event. Along the north-south profile a general southward increase in temperature is evident. The lowest temperatures are recorded in proximity to the basin margin on the southern flank of the Murphy inlier. Thermal processes and their sequence of events in the basin are recorded by organic maturation, subsequent hydrocarbon generation, its migration and destruction coincident with transport and precipitation of minerals. As some timing and trapping mechanisms for minerals may have analogues with hydrocarbon entrapment, relative timing of processes leading to organic maturation, hydrocarbon generation and migration are utilized in this study to enhance understanding of ore-grade mineralization. In the Proterozoic successions of the Mount Isa basin multiple hydrocarbon generation events are recognized. These events record the transient passage of potential metal-bearing fluids rather than background conductive heat flow from the basement. Such hydrothermal fluids are responsible for inverse maturation profiles in the vicinity of the Termite Range fault and extreme maturation (reflectance values) up to 6 percent Ro at the Grevillea prospect. At Century, intermediate Ro values of
Resumo:
Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.
Resumo:
This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.
Resumo:
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics'' sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics'' science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.
Resumo:
Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized
Resumo:
The composition of termite assemblages was analyzed at three Caatinga sites of the Seridó Ecological Station, located in the municipality of Serra Negra do Norte, in the state of Rio Grande do Norte, Brazil. These sites have been subjected to selective logging, and cleared for pasture and farming. A standardized sampling protocol for termite assemblages (30h/person/site) was conducted between September 2007 and February 2009. At each site we measured environmental variables, such as soil granulometry, pH and organic matter, necromass stock, vegetation height, tree density, stem diameter at ankle height (DAH) and the largest and the smallest crown width. Ten species of termites, belonging to eight genera and three families, were found at the three experimental sites. Four feeding-groups were sampled: wood-feeders, soil-feeders, wood-soil interface feeders and leaf-feeders. The wood-feeders were dominant in number of species and number of encounters at all sites. In general, the sites were not significantly different in relation to the environmental variables measured. The same pattern was observed for termite assemblages, where no significant differences in species richness, relative abundance and taxonomic and functional composition were observed between the three sites. The agreement between the composition of assemblages and environmental variables reinforces the potential of termites as biological indicators of habitat quality
Resumo:
Climate change, intensive use, and population growth are threatening the availability of water resources. New sources of water, better knowledge of existing ones, and improved water management strategies are of paramount importance. Ground water is often considered as primary water source due to its advantages in terms of quantity, spatial distribution, and natural quality. Remote sensing techniques afford scientists a unique opportunity to characterize landscapes in order to assess groundwater resources, particularly in tectonically influenced areas. Aquifers in volcanic basins are considered the most productive aquifers in Latin America. Although topography is considered the primary driving force for groundwater flows in mountainous terrains, tectonic activity increases the complexity of these groundwater systems by altering the integrity of sedimentary rock units and the overlying drainage networks. Structural controls affect the primary hydraulic properties of the rock formations by developing barriers to flow in some cases and zones of preferential infiltration and subterranean in others. The study area focuses on the Quito Aquifer System (QAS) in Ecuador. The characterization of the hydrogeology started with a lineament analysis based on a combined remote sensing and digital terrain analysis approach. The application of classical tools for regional hydrogeological evaluation and shallow geophysical methods were useful to evaluate the impact of faulting and fracturing on the aquifer system. Given the spatial extension of the area and the complexity of the system, two levels of analysis were applied in this study. At the regional level, a lineament map was created for the QAS. Relationships between fractures, faults and lineaments and the configuration of the groundwater flow on the QAS were determined. At the local level, on the Plateaus region of the QAS, a detailed lineament map was obtained by using high-spatial-resolution satellite imagery and aspect map derived from a digital elevation model (DEM). This map was complemented by the analysis of morphotectonic indicators and shallow geophysics that characterize fracture patterns. The development of the groundwater flow system was studied, drawing upon data pertaining to the aquifer system physical characteristics and topography. Hydrochemistry was used to ascertain the groundwater evolution and verify the correspondence of the flow patterns proposed in the flow system analysis. Isotopic analysis was employed to verify the origin of groundwater. The results of this study show that tectonism plays a very important role for the hydrology of the QAS. The results also demonstrate that faults influence a great deal of the topographic characteristics of the QAS and subsequently the configuration of the groundwater flow. Moreover, for the Plateaus region, the results demonstrate that the aquifer flow systems are affected by secondary porosity. This is a new conceptualization of the functioning of the aquifers on the QAS that will significantly contribute to the development of better strategies for the management of this important water resource.
Resumo:
The ability to measure tiny variations in the local gravitational acceleration allows – amongst other applications – the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required (tens of μGal/√Hz), and stabilities required (periods of days to weeks) for such applications: free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides; the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of excessive cost (£70 k) and high mass (<8 kg). In this thesis, the building of a microelectromechanical system (MEMS) gravimeter with a sensitivity of 40 μGal/√Hz in a package size of only a few cubic centimetres is discussed. MEMS accelerometers – found in most smart phones – can be mass-produced remarkably cheaply, but most are not sensitive enough, and none have been stable enough to be called a ‘gravimeter’. The remarkable stability and sensitivity of the device is demonstrated with a measurement of the Earth tides. Such a measurement has never been undertaken with a MEMS device, and proves the long term stability of the instrument compared to any other MEMS device, making it the first MEMS accelerometer that can be classed as a gravimeter. This heralds a transformative step in MEMS accelerometer technology. Due to their small size and low cost, MEMS gravimeters could create a new paradigm in gravity mapping: exploration surveys could be carried out with drones instead of low-flying aircraft; they could be used for distributed land surveys in exploration settings, for the monitoring of volcanoes; or built into multi-pixel density contrast imaging arrays.
Resumo:
This study tests two general and independent hypotheses with the basic assumption that phytoactive secondary compounds produced by plants evolved primarily as plant defences against competitor plant species. The first hypothesis is that the production and main way of release of phytoactive compounds reflect an adaptive response to climatic conditions. Thus, higher phytoactivity by volatile compounds prevails in plants of hot, dry environments, whereas higher phytoactivity by water-soluble compounds is preponderant in plants from wetter environments. The second hypothesis is that synergy between plant phytoactive compounds is widespread, due to the resulting higher energy efficiency and economy of resources. The first hypothesis was tested on germination and early growth of cucumber treated with either water extracts or volatiles from leaves or vegetative shoot tops of four Mediterranean-type shrubs. The second hypothesis was tested on germination of subterranean clover treated with either water extracts of leaves or vegetative shoot tops of one tree and of three Mediterranean-type shrubs or with each of the three fractions obtained from water extracts. Our data do not support either hypotheses. We found no evidence for higher phytoactivity in volatile compounds released by plants that thrive in hot, dry Mediterranean-type environments. We also found no evidence for the predominance of synergy among the constituents of fractions. To the contrary, we found either antagonism or no interaction of effects among allelopathic compounds.