928 resultados para Substrate-reduction activity
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
A hallmark of aging is the sensorimotor deficit, characterized by an increased reaction time and a reduction of motor abilities. Some mechanisms such as motor inhibition deteriorate with aging because of neuronal density alterations and modifications of connections between brain regions. These deficits may be compensated throughout a recruitment of additional areas. Studies have shown that old adults have increased difficulty in performing bimanual coordination tasks compared with young adults. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. The present study examines performances and electro-cortical correlates of motor switching in young and elderly adults.
Resumo:
Background a nd A ims: There is a n ongoing d ebate which i sthe most appropriate w ay t o measure inflammatory boweldisease (IBD) activity (be it b y clinical i ndices, e ndoscopy, orbiomarkers). Accumulating evidence associates m ucosalhealing with a reduction in I BD-related s urgery andhospitalizations. We a imed to i nvestigate which outcomeparameters are used in daily practice for IBD monitoring.Methods: A q uestionnaire was sent in J uly 2010 t o all boardcertified gastroenterologists in S witzerland to evaluate t heassessment strategy of IBD activity, t he items on whichtherapeutic decisions w ere based upon, and the kind ofbiomarkers used for monitoring IBD activity.Results: Response rate was 57% (153/270). Mean physician'sage was 5 0±9years, mean duration o f gastroenterologicpractice 1 4±8years, 52% of them were working in p rivatepractice a nd 48% in h ospitals. S eventy-eight percent usedclinical activity i ndices as g old standard for IBD activityassessment, followed by 15% choosing endoscopic activity, and7% favouring biomarkers. Gastroenterologists based theirtherapeutic decisions in 70% on clinical activity indices, 24% onendoscopic activity, a nd 6% o n biomarkers. Most frequentlyused biomarkers were C-reactive protein (94%), complete bloodcount (78%) and fecal calprotectin (74%).Conclusions: I n daily p ractice, most IBD patients a remonitored based u pon t heir clinical a ctivity. B iomarkers a reperceived as l ess important compared to clinical andendoscopic activity. S imilar to activity a ssessment, alsotherapeutic decisions a re mostly made on the basis of clinicalactivity indices. The upcoming scientific evidence on the impactof mucosal h ealing does n ot yet seem to influence the dailypractice of gastroenterologists.
Resumo:
Colorectal cancers exhibit a high telomerase activity, usually correlated with the hypermethylation of the promoter of its hTERT catalytic subunit. Although telomerase is not expressed in normal tissue, certain proliferative somatic cells such as intestinal crypt cells have demonstrated telomerase activity. The aim of this study was to determine whether a correlation exists between telomerase activity, levels of hTERT methylation and telomere length in tumoral and normal colorectal tissues. Tumor, transitional and normal tissues were obtained from 11 patients with a colorectal cancer. After bisulfite modification of genomic DNA, hTERT promoter methylation was analyzed by methylation-sensitive single-strand conformation analysis (MS-SSCA). Telomerase activity and telomere length were measured by a fluorescent-telomeric repeat amplification protocol assay and by Southern blotting, respectively. A significant increase of hTERT methylation and telomerase activity, and a reduction of the mean telomere length were observed in the tumor tissues compared to the transitional and normal mucosa. In the transitional and normal mucosa, telomerase activity was significantly lower than that in tumor tissues, even with high levels of hTERT methylation. Nevertheless, hTERT promoter methylation was not linearly correlated to telomerase activity. These data indicate that hTERT promoter methylation is a necessary event for hTERT expression, as is telomerase activity. However, methylation is not sufficient for hTERT activation, particularly in normal colorectal cells.
Resumo:
High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes.
Resumo:
To determine the metabolic effects of a single bout of exercise performed after a meal or in the fasting state, nine healthy subjects were studied over two 8-h periods during which net substrate oxidation was monitored by indirect calorimetry. On one occasion, exercise was performed 90 min after ingestion of a meal labeled with [U-13C]glucose [protocol meal-exercise (M-E)]. On the second occasion, exercise was performed after an overnight fast and was followed 30 min later by ingestion of an identical meal [protocol exercise-meal (E-M)]. Energy balances were similar in both protocols, but carbohydrate balance was positive (42.2 +/- 5.1 g), and lipid balance was negative (-11.1 +/- 2.0) during E-M, whereas they were nearly even during M-E. Total glycogen synthesis was calculated as carbohydrate intake minus oxidation of exogenous 13C-labeled carbohydrate (calculated from 13CO2 production). Total glycogen synthesis was increased by 90% (from 47.6 +/- 3.8 to 90.7 +/- 5.4 g, P < 0.0001) during E-M vs. M-E. Endogenous glycogen breakdown was calculated as net carbohydrate oxidation minus oxidation of exogenous carbohydrate and was increased by 44% (from 35.8 +/- 5.6 to 51.7 +/- 6.6 g, P < 0.004) during E-M. It is concluded that exercise performed in the fasting state stimulates glycogen turnover and fat oxidation.
Resumo:
We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm.
Resumo:
The activity of dalbavancin, a representative of the lipoglycopeptide antibiotics, alone and in combination with rifampicin, was investigated against meticillin-resistant Staphylococcus aureus (MRSA) in a foreign-body infection model in guinea pigs. The MIC, MBC and time-kill profile of dalbavancin were determined for MRSA ATCC 43300 in the logarithmic (MBClog) and stationary (MBCstat) growth phases. The pharmacokinetic profile of dalbavancin was determined in sterile cage fluid in guinea pigs. The activity of intraperitoneal dalbavancin (40, 60 or 80mg/kg as a single dose), rifampicin (12.5mg/kg/12h for 4 days) and their combination was assessed against planktonic and biofilm MRSA. The MIC of dalbavancin was 0.078mg/L; MBClog and MBCstat were both >128Ã- MIC. In time-kill studies, bacterial reduction of 3log10CFU/mL was achieved after 48h at â0/00¥32Ã- MIC (logarithmic growth) and at â0/00¥1Ã- MIC (stationary growth). Dalbavancin was neither synergistic nor antagonistic with rifampicin, and prevented the emergence of rifampicin resistance in vitro. The half-life of dalbavancin in cage fluid was 35.8-45.4h and the concentration remained above the MIC of MRSA during 7 days after a single dose. Dalbavancin reduced planktonic MRSA in cage fluid at high dose (60mg/kg and 80mg/kg) but failed to eradicate biofilm MRSA from cages. In combination with rifampicin, dalbavancin at 80mg/kg cured 36% of infected cages, and emergence of rifampicin resistance was completely prevented. Dalbavancin at 80mg/kg and in combination with rifampicin eradicated approximately one-third of cage-associated MRSA infections and prevented emergence of rifampicin resistance.
Resumo:
A 47-year-old male taxi driver experienced multiple adverse drug reactions during therapy with clomipramine (CMI) and quetiapine for major depressive disorder, after having been unsuccessfully treated with adequate doses of mirtazapine and venlafaxine. Drug serum concentrations of CMI and quetiapine were significantly increased and pharmacogenetic testing showed a poor metabolizer status for CYP2D6, low CYP3A4/5 activity and normal CYP2C19 genotype. After reduction of the CMI dose and discontinuation of quetiapine, all ADR subsided except for the increase in liver enzymes. The latter improved but did not normalize completely, even months later, possibly due to concomitant cholelithiasis.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression ofSSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.
Resumo:
Ihmisen toiminnan vaikutus ilmakehään johtaa todennäköisesti ilmastonmuutoksiin. Eräs näistä muutoksista on maapallon keskilämpötilan nousu, joka aiheutuu kasvihuonekaasujen lisääntyneestä pitoisuudesta ilmakehässä. Vaikutusten vähentämiseksi on hiilidioksidipäästöjä vähennettävä. Kioton pöytäkirja asettaa allekirjoittaneille maille päästövelvoitteet. Euroopan unionin tulee vähentää kasvihuonekaasupäästöjään 8%:lla. Eräs vähennysmekanismeista on päästökauppa. Päästökauppa on sekä keino suojella ympäristöä että ympäristöpoliittinen instrumentti kasvihuonekaasupäästövähennysten kustannusten keventämiseksi. Päästökauppa ei suoranaisesti vähennä kasvihuonekaasupäästöjä, vaan tasaa niitä maiden ja laitosten välillä. Uusiutuvan energian käytön edistäminen sekä kansainvälisesti että kansallisesti johtaa suoriin kasvihuonekaasupäästöjen vähenemiseen. Euroopan unionin jäsenvaltiot ovat asettaneet kansalliset viitearvot uusituvan sähkön kulutukselle. Saavuttaakseen nämä viitearvot maiden tulee tukea uusiutuvia energialähteitä eri menetelmin kuten vihreillä sertifikaateilla. Päästökauppa ja kaupattavat vihreät sertifikaatit tulevat vaikuttamaan energiantuottajien liiketoimintaan. Työssä on tutkittu päästökaupan ja vihreiden sertifikaattien vaikutuksia Vattenfall Kaukolämpö Oy:n, Vattenfall Sähköntuotanto Oy:n ja Vamy Oy:n liiketoimintaan.
Resumo:
Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. The lack of oxygen can induce the generation of reactive oxygen and nitrogen free radicals (RONS), followed by oxidative stress, and finally, apoptosis and/or necrosis. Furthermore, since the hypothermia is inevitably followed by a rewarming process, we should also consider its effects. Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
BACKGROUND: Physical activity and sedentary behaviour in youth have been reported to vary by sex, age, weight status and country. However, supporting data are often self-reported and/or do not encompass a wide range of ages or geographical locations. This study aimed to describe objectively-measured physical activity and sedentary time patterns in youth. METHODS: The International Children's Accelerometry Database (ICAD) consists of ActiGraph accelerometer data from 20 studies in ten countries, processed using common data reduction procedures. Analyses were conducted on 27,637 participants (2.8-18.4 years) who provided at least three days of valid accelerometer data. Linear regression was used to examine associations between age, sex, weight status, country and physical activity outcomes. RESULTS: Boys were less sedentary and more active than girls at all ages. After 5 years of age there was an average cross-sectional decrease of 4.2 % in total physical activity with each additional year of age, due mainly to lower levels of light-intensity physical activity and greater time spent sedentary. Physical activity did not differ by weight status in the youngest children, but from age seven onwards, overweight/obese participants were less active than their normal weight counterparts. Physical activity varied between samples from different countries, with a 15-20 % difference between the highest and lowest countries at age 9-10 and a 26-28 % difference at age 12-13. CONCLUSIONS: Physical activity differed between samples from different countries, but the associations between demographic characteristics and physical activity were consistently observed. Further research is needed to explore environmental and sociocultural explanations for these differences.