918 resultados para Structure-degradation relationship
Resumo:
As águas residuárias provenientes da indústria do charque são conhecidas por apresentarem elevado teor de cloreto de sódio, aliado a grandes concentrações de matéria orgânica proveniente do sangue liberado ao longo do processo industrial. Esse tipo de água residuária apresenta potencial para degradação biológica, contudo, o cloreto de sódio, em concentração elevada, pode inibir a atividade dos microrganismos e, em alguns casos, levar sistemas biológicos à falência. No presente trabalho, foi avaliada a viabilidade de degradação anaeróbia de efluente sintético de Charqueada contendo elevado teor de cloreto de sódio, em reator anaeróbio tipo UASB (Upflow Anaerobic Sludge Blanket), em escala de laboratório. Foram utilizados 4 reatores, alimentados com água residuária sintética com características similares à água residuária de Charqueada. O reator 1 foi utilizado como controle, o reator 2 recebeu NaCl e os demais (3 e 4) foram operados na presença de NaCl acrescidos de: betaína e potássio com cálcio, respectivamente. Os compostos citados são conhecidos como antagonizantes, por possuirem capacidade de minimizar o efeito inibitório do sódio sobre o processo de digestão anaeróbia. Os reatores foram inoculados com lodo de reator UASB e submetidos à concentração de 5000 mg/L de matéria orgânica, como DQO. A carga orgânica aplicada foi de 5 Kg/m3.d e os reatores não suportaram tal carga. Reiniciou-se a operação com aumento progressivo da DQO de 500 a 2000 mg/L resultando em cargas orgânicas de 0,5 a 2,0 Kg/m3.d, respectivamente. Após estabilização dos reatores, iniciou-se a fase de introdução de cloreto de sódio (1.500 a 13.500 mg/L) e antagonizantes com aumento progressivo a cada fase. Na presença ou ausência de antagonizantes, os reatores 2, 3 e 4 não tiveram o desempenho alterado até a concentração de NaCl de 6000 mg/L. Na presença de 9000 mg/L de NaCl, a betaína se mostrou pouco efetiva como soluto compatível no reator 3 e os antagonizantes do reator 4, potássio e cálcio, apresentaram efeitos estimulatórios. As morfologias encontradas ao longo do experimento foram cocos, víbrios, bacilos, sarcinas, além de morfologias semelhantes a Methanosarcina sp. e Methanosaeta sp. O aumento da concentração de cloreto de sódio provocou a redição da população de Arqueas.
Resumo:
A doença de Chagas é uma parasitose extremamente negligenciada, cujo agente etiológico é o protozoário Trypanosoma cruzi. Atualmente, 21 países da América Latina são considerados regiões endêmicas, onde 75-90 milhões de pessoas estão expostas à infecção, 6-7 milhões estão infectadas e mais de 41 mil novos casos surgem por ano. Entretanto, apenas os fármacos nifurtimox e benznidazol estão disponíveis no mercado. Estes, além da baixa eficácia na fase crônica da parasitose, apresentam diversos efeitos adversos, sendo que no Brasil apenas o benznidazol é utilizado. Este fato mostra a importância de se ampliar o número de fármacos disponíveis e propor quimioterapia mais eficaz para o tratamento da doença de Chagas. Como forma de contribuir para essa busca, este trabalho objetiva a síntese de compostos híbridos bioisostéricos N-acilidrazônicos e sulfonilidrazônicos, contendo grupo liberador de óxido nítrico, com potencial de interação com cisteíno-proteases parasitárias, tais como a cruzaína. Nestes derivados, os grupos liberadores de óxido nítrico utilizados foram os grupos furoxano (contendo substituinte metílico e fenílico) e éster nitrato. Propôs-se a variação de anéis aromáticos substituídos e não-substituídos, com o intuito de avaliar a possível relação estrutura-atividade (REA) desses análogos. Até o momento, somente os compostos da série N-acilidrazônica tiveram avaliação biológica realizada. Os valores de IC50 dos compostos na forma amastigota do parasita variaram entre >100 a 2,88 µM, sendo este último valor comparável ao fármaco de referência. A atividade inibitória frente à cruzaína foi de 25,2 µM a 2,2 µM. Já a liberação de óxido nítrico foi avaliada pelo método indireto de detecção de nitrato e os valores variaram entre 52,0 µM e 4.232,0 µM. Estes são bem inferiores ao composto padrão, além de não se identificar correlação direta entre a atividade biológica e a liberação de NO. Na sequência, os dois compostos mais ativos (6 e 14) foram submetidos a estudos de permeabilidade e de citotoxicidade. O composto 6 foi considerado o de maior permeabilidade segundo o Sistema de Classificação Biofarmacêutica (SCB) e todos os compostos apresentaram a taxa de fluxo menor que 2, indicando a ausência de mecanismo de efluxo. Na avaliação do potencial citotóxico desses compostos em células humanas, o derivado 6 apresentou índice de seletividade superior ao do benznidazol. Em estudos de modelagem molecular usando análise exploratória de dados (HCA e PCA), propriedades estéricas/geométricas e eletrônicas foram consideradas as mais relevantes para a atividade biológica. Além disso, estudos de docking mostraram que a posição do grupo nitro no anel aromático é importante para a interação com a cruzaína. Ademais o composto 6 não provocou mudanças significativas no ciclo celular e na fragmentação de DNA em células humanas, mostrando-se como líder promissor para futuros estudos in vivo. Atividade tripanomicida, citotoxicidade, potencial de liberação de NO e estudos de permeabilidade dos 23 derivados sulfonilidrazônicos e ésteres nitrato estão sendo avaliados.
Resumo:
Chromones and xanthones are oxygen-containing heterocyclic compounds acknowledged by their antioxidant properties. In an effort to develop novel agents with improved activity, a series of compounds belonging to these chemical classes were prepared. Their syntheses involve the condensation of appropriate 2-methyl-4H-chromen-4-ones, obtained via Baker-Venkataraman rearrangement, with (E)-3-(3,4-dimethoxyphenyl)acrylaldehyde to provide the corresponding 2-[(1E,3E)-4-(3,4-dimethoxyphenyl)buta-1,3-dien-1-yl]-4H-chromen-4-ones. Subsequent electrocyclization and oxidation of these compounds led to the synthesis of 1-aryl-9H-xanthen-9-ones. After cleavage of the protecting groups, hydroxylated chromones and xanthones were assessed as scavenging agents against both reactive oxygen species (ROS) [superoxide radical (O2(•-)), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), singlet oxygen ((1)O2), and peroxyl radical (ROO(•))] and reactive nitrogen species (RNS) [nitric oxide ((•)NO) and peroxynitrite anion (ONOO(-))]. Generally, all the tested new hydroxylated chromones and xanthones exhibited scavenger effects dependent on the concentration, with IC50 values found in the micromolar range. Some of them were shown to have improved scavenging activity when compared with previously reported analogues, allowing the inference of preliminary conclusions on the structure-activity relationship.
Resumo:
Investigations of a southern Australian marine sponge, Oceanapia sp., have yielded two new methyl branched bisthiocyanates, thiocyanatins D-1 (3a) and D-2 (3b), along with two new thiocarbamate thiocyanates, thiocyanatins E-l (4a) and E-2 (4b). The new thiocyanatins belong to a rare class of bioactive marine metabolite previously only represented by thiocyanatins A-C (1, 2a/b). Structures were assigned on the basis of detailed spectroscopic analysis, with comparisons to the known bisthiocyanate thiocyanatin A (1) and synthetic model compounds (5-7). The thiocyanatins exhibit potent nematocidal activity, and preliminary structure-activity relationship investigations have confirmed key characteristics of the thiocyanatin pharmacophore.
Resumo:
Scorpion toxins are common experimental tools for studies of biochemical and pharmacological properties of ion channels. The number of functionally annotated scorpion toxins is steadily growing, but the number of identified toxin sequences is increasing at much faster pace. With an estimated 100,000 different variants, bioinformatic analysis of scorpion toxins is becoming a necessary tool for their systematic functional analysis. Here, we report a bioinformatics-driven system involving scorpion toxin structural classification, functional annotation, database technology, sequence comparison, nearest neighbour analysis, and decision rules which produces highly accurate predictions of scorpion toxin functional properties. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.
Resumo:
The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.
Resumo:
Highly selective N-type voltage-gated calcium (Ca-V) channel inhibitors from cone snail venom (the omega-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt ( Elan) or synthetic omega-conotoxin MVIIA, was the first omega-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three omega-conotoxins, GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved N-type therapeutics that are more useful in the treatment of chronic pain.
Resumo:
Scorpion toxins are important physiological probes for characterizing ion channels. Molecular databases have limited functional annotation of scorpion toxins. Their function can be inferred by searching for conserved motifs in sequence signature databases that are derived statistically but are not necessarily biologically relevant. Mutation studies provide biological information on residues and positions important for structure-function relationship but are not normally used for extraction of binding motifs. 3D structure analyses also aid in the extraction of peptide motifs in which non-contiguous residues are clustered spatially. Here we present new, functionally relevant peptide motifs for ion channels, derived from the analyses of scorpion toxin native and mutant peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.
Resumo:
Bis-cyclic butenolides, 5-arylated 2(5H)-furanones 6a-c, 7a, b and the 3(2H)-pyridazones 9a-d were prepared by using the aldehyde form of muco halogen acids in electrophilic substitution reactions and in an aldol-like condensation reaction. The cytotoxicity of these simple and bis-cyclic butenolides have been evaluated in tissue culture studies on MAC 13 and MAC 16 murine colon cancer cell lines. The butyl furanone 3 displayed the highest cytotoxicity of 3 μM, as one selected example of a series of dichlorinated pseudoesters. The 5-arylated 2(5H)-furanones 6 and 7 did not show a structure-activity relationship (SAR) depending on the substitution pattern of the aromatic system. An IC50 (concentration inhibiting growth by 50%) was found within a range of 30-50 and 40-50 μM for the MAC 13 and MAC 16 cell lines, respectively. The pyridazine series 9 showed a maximum in-vitro activity for the p-methoxydrivative 9b, having an IC50 of 17 in MAC 13 and 11 μM in MAC 16 cell lines. Selected examples of each series and further novel 2(5H)-furanones such as the hydrazone 5 and the hydantoin 8 have been screened in-vivo in mice and the data are presented. For the pyridazines 9a-d, the in-vitro cytotoxicity correlated with an in-vivo inhibition of tumour growth. The ring expansion of the 5-membered 2(5H)-furanone ring system such as 6a into the 6-membered 3(2H)-pyridazone 9b led to an agent with improved antineoplastic properties. On the resistant MAC 16 cell line the pyridazone 9b displayed 52% tumour inhibition in mice at a dose of 50 mg kg-1 compared with 27% for the 5-FU standard.
Resumo:
Background Yeast is an important and versatile organism for studying membrane proteins. It is easy to cultivate and can perform higher eukaryote-like post-translational modifications. S. cerevisiae has a fully-sequenced genome and there are several collections of deletion strains available, whilst P. pastoris can produce very high cell densities (230 g/l). Results We have used both S. cerevisiae and P. pastoris to over-produce the following His6 and His10 carboxyl terminal fused membrane proteins. CD81 – 26 kDa tetraspanin protein (TAPA-1) that may play an important role in the regulation of lymphoma cell growth and may also act as the viral receptor for Hepatitis C-Virus. CD82 – 30 kDa tetraspanin protein that associates with CD4 or CD8 cells and delivers co-stimulatory signals for the TCR/CD3 pathway. MC4R – 37 kDa seven transmembrane G-protein coupled receptor, present on neurons in the hypothalamus region of the brain and predicted to have a role in the feast or fast signalling pathway. Adt2p – 34 kDa six transmembrane protein that catalyses the exchange of ADP and ATP across the yeast mitochondrial inner membrane. Conclusion We show that yeasts are flexible production organisms for a range of different membrane proteins. The yields are such that future structure-activity relationship studies can be initiated via reconstitution, crystallization for X-ray diffraction or NMR experiments.
Resumo:
Oxysterols (OS), the polyoxygenated sterols, represent a class of potent regulatory molecules for important biological actions. Cytotoxicity of OS is one of the most important aspects in studies of OS bioactivities. However, studies, the structure-activity relationship (SAR) study in particular, have been hampered by the limited availability of structurally diverse OS in numbers and amounts. The aim of this project was to develop robust synthetic methods for the preparation of polyhydroxyl sterols, thereof, evaluate their cytotoxicity and establish structure-activity relationship. First, we found hydrophobicity of the side chain is essential for 7-HC's cytotoxicity, and a limited number of hydroxyl groups and a desired configuration on the A, B ring are required for a potent cytotoxicity of an OS, after syntheses and tests of a number of 7-HC's analogues against cancer cell lines. Then polyoxygenation of cholesterol A, B rings was explored. A preparative method for the synthesis of four diastereomerically pure cholest-4-en-3,6-diols was developed. Epoxidation on these cholest-4-en-3,6-diols showed that an allyl group exerts an auxiliary role in producing products with desired configuration in syntheses of the eight diastereomerically pure 45-epoxycholestane-3,6-diols. Reduction of the eight 45-epoxycholestane-3,6-diols produced all eight isomers of the cytotoxic 5α-acholestane 3β,5,6β-triol (CT) for the first time. Epoxide ring opening with protic or Lewis acids on the eight 45-epoxycholestane-3,6-diols are carefully studied. The results demonstrated a combination of an acid and a solvent affected the outcomes of a reaction dramatically. Acyl group participation and migration play an important role with numbers of substrates under certain conditions. All the eight 4,5-trans cholestane- 3,4,5,6-tetrols were synthesised through manipulation of acyl participation. Furthermore these reaction conditions were tested when a number of cholestane-3,4, 5,6,7-pentols and other C3-C7 oxygenated sterols were synthesised for the first time. Introduction of an oxygenated functional group through cholest-2-ene derivatives was studied. The elimination of 3-(4-toluenesulfonate) esters showed the interaction between the existing hydroxyls or acyls with the reaction centre often resulted in different products. The allyl oxidation, epoxidation and Epoxide ring opening reactions are investigated with these cholest-2-enes.
Resumo:
Dipeptides can be absorbed into cells via the dipeptide transporter (which also transported tripeptides and dipeptide derivatives). The optimum conditions for measuring the inhibition of Gly-Pro uptake in Caco-2 cells were identified. A number of structure-activity relationships were identified. These included the effects of increasing the amino-acid chain-length, and the presence of a thiol or hydroxyl group in the side-chain increased IC50 while the presence of a hydroxyl group did not. The benzyl esters had lower or equal IC50 values compared to the parent dipeptides while the methyl esters had higher values. These results indicated that while molecular properties did affect IC50, the size, charge and composition of three particular groups caused the most significant effects, supporting the structure-activity relationship identified. An assay was developed using calcein-AM to show the inhibition of p-glycoprotein activity. There was no significant change due to the presence of mannitol but there was in the presence of clyclosporin A (p<0.01). Incubating the cells with the test solution for 30 minutes before the addition of the ester resulted in a significant (p<0.001) difference. The assay was specific for p-glycoprotein, as the presence MRP inhibitors had no effect (p>0.05). The modified protocol allowed the identification of p-glycoprotein inhibitors quickly and simply using a cell suspension of unmodified cells. The clinically relevant buffering of grapefruit juice to pH 7 led to a four-fold increase in intracellular calcein and hence significant inhibition of p-glycoprotein. Buffered orange and lemon juices had no effect on the assay. Flavone derivatives had previously been found to be inhibitors of CYP3A4 yet neither naringin nor naringenin had any significant effect at concentrations found in grapefruit juice. Of the other (non-grapefruit) flavone derivatives tested, hesperidin, found in orange juice, had no significant effect, kaempferol and rutin also had no effect while genistein significantly inhibited p-glycoprotein (results that support previous studies). Hydroxycinnamic acids had no effect on p-glycoprotein. Studies on other compounds found that the balance between inhibiting p-glycoprotein and disrupting cell membranes depends on the compound containing an oxygen atom and the size of the negative charge on it, as well as three-dimensional arrangement of the atoms.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.