903 resultados para Structural engineering -- Earthquake effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implicit in current design practice of minimum uplift capacity, is the assumption that the connection's capacity is proportional to the number of fasteners per connection joint. This assumption may overestimate the capacity of joints by a factor of two or more and maybe the cause of connection failures in extreme wind events. The current research serves to modify the current practice by proposing a realistic relationship between the number of fasteners and the capacity of the joint. The research is also aimed at further development of non-intrusive continuous load path (CLP) connection system using Glass Fiber Reinforced Polymer (GFRP) and epoxy. Suitable designs were developed for stud to top plate and gable end connections and tests were performed to evaluate the ultimate load, creep and fatigue behavior. The objective was to determine the performance of the connections under simulated sustained hurricane conditions. The performance of the new connections was satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arch bridges are strong, durable, aesthetically pleasing and require little maintenance but very few have been built since the early 1900s. However, this trend has changed as more than 60 FlexiArch bridges have been installed since the system was launched in 2007. The FlexiArch uses precast concrete voussoirs, requires neither corrodible reinforcement, nor centring, can be installed in hours and is contractor friendly. Details of this innovative method of construction and installation of arch bridges are given and the enormous potential of the system for multi-span
viaducts is also highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverse analysis for reactive transport of chlorides through concrete in the presence of electric field is presented. The model is solved using MATLAB’s built-in solvers “pdepe.m” and “ode15s.m”. The results from the model are compared with experimental measurements from accelerated migration test and a function representing the lack of fit is formed. This function is optimised with respect to varying amount of key parameters defining the model. Levenberg-Marquardt trust-region optimisation approach is employed. The paper presents a method by which the degree of inter-dependency between parameters and sensitivity (significance) of each parameter towards model predictions can be studied on models with or without clearly defined governing equations. Eigen value analysis of the Hessian matrix was employed to investigate and avoid over-parametrisation in inverse analysis. We investigated simultaneous fitting of parameters for diffusivity, chloride binding as defined by Freundlich isotherm (thermodynamic) and binding rate (kinetic parameter). Fitting of more than 2 parameters, simultaneously, demonstrates a high degree of parameter inter-dependency. This finding is significant as mathematical models for representing chloride transport rely on several parameters for each mode of transport (i.e., diffusivity, binding, etc.), which combined may lead to unreliable simultaneous estimation of parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One of the solutions is in a drive-by approach utilizing vehicle vibrations while the vehicle passes over the bridge. In this approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. This study aims to examine subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the drive-by method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several problems arise when measuring the mode II interlaminar fracture toughness using a Transverse Crack Tension specimen; in particular, the fracture toughness depends on the geometry of the specimen and cannot be considered a material parameter. A preliminary experimental campaign was conducted on TCTs of different sizes but no fracture toughness was measured because the TCTs failed in an unacceptable way, invalidating the tests. A comprehensive numerical and experimental investigation is conducted to identify the main causes of this behaviour and a modification of the geometry of the specimen is proposed. It is believed that the obtained results represent a significant contribution in the understanding of the TCT test as a mode II characterization procedure and, at the same time, provide new guidelines to characterize the mode II crack propagation under tensile loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An RVE–based stochastic numerical model is used to calculate the permeability of randomly generated porous media at different values of the fiber volume fraction for the case of transverse flow in a unidirectional ply. Analysis of the numerical results shows that the permeability is not normally distributed. With the aim of proposing a new understanding on this particular topic, permeability data are fitted using both a mixture model and a unimodal distribution. Our findings suggest that permeability can be fitted well using a mixture model based on the lognormal and power law distributions. In case of a unimodal distribution, it is found, using the maximum-likelihood estimation method (MLE), that the generalized extreme value (GEV) distribution represents the best fit. Finally, an expression of the permeability as a function of the fiber volume fraction based on the GEV distribution is discussed in light of the previous results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-strength concrete is defined as a concrete where the compressive cubic strength is less than 15 MPa. Since the beginning of the last century, many low-strength concrete buildings and bridges have been built all over the world. Being short of deeper study, composite sheets are prohibited in strengthening of low-strength reinforced concrete members (CECS 146; ACI 440). Moreover, there are few relevant information about the long-term behavior and durability of strengthened RC members. This fact undoubtedly limits the use of the composite materials in the strengthening applications, therefore, it is necessary to study the behaviours of low-strength concrete elements strengthened with composite materials (FRP) for the preservation of historic constructions and innovation in the strengthening technology. Deformability is one of criteria in the design of concrete structures, and this for functionality, durability and aesthetics reasons. Civil engineer possibly encounters more deflection problems in the structural design than any other type of problem. Many materials common in structural engineering such as wood, concrete and composite materials, suffer creep; if the creep phenomenon is taken into account, checks for serviceability limit state criteria can become onerous, because the creep deformation in these materials is in the same order of magnitude as the elastic deformation. The thesis presents the results of an experimental study on the long-term behavior of low-strength reinforced concrete beams strengthened with carbon fiber composite sheets (CFRP). The work has investigated the accuracy of the long-term deflection predictions made by some analytical procedures existing in literature, as well as by the most widely used design codes (Eurocode 2, ACI-318, ACI-435).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas