942 resultados para Stream macroalgae
Resumo:
Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.
Resumo:
The density and composition of stream bed metal deposits are affected by physical, chemical and biological processes. In this paper we investigate the importance of these processes and their relation to algal and non-photosynthetic detrital (NPD) biomass in a set of upland streams in Northern Ireland. Deposit density and Fe, Mn, Al and P concentrations varied with stream pH across sites but not seasonally. No effects of stream bed erosion or photoreduction were detected on deposit densities. Seasonal variation in stream water metal concentrations was correlated with rainfall. NPD biomass was a significant predictor of both spatial and seasonal variation in deposit concentrations. There were strong, non-linear, relations between NPD biomass and deposit metal concentrations, with Fe and Mn becoming relatively more important and algal biomass declining above threshold deposit/NPD densities. The results suggest that NPD biomass influences deposit density and reduces the biomass of photosynthetic autotrophs above a threshold deposit density.
Resumo:
Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for Fe, Mn and Al as well as a range of other chemical determinands known to affect metal solubility. Densities of metal-rich ochre deposit were determined for stream bed stone samples. Higher conductivities and concentrations of bicarbonate, alkalinity, Ca and Mg occurred on basalt than on schist. Despite higher Fe and Mn oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and ochre deposit densities only one third of those on schist overlain by humic soils. Neither rock nor soil type predicted Al concentrations, but pH and dissolved oxygen did. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist have resulted in elevated concentrations of metals and ochre deposit in surface waters.
Resumo:
Software-programmable `soft' processors have shown tremendous potential for efficient realisation of high performance signal processing operations on Field Programmable Gate Array (FPGA), whilst lowering the design burden by avoiding the need to design fine-grained custom circuit archi-tectures. However, the complex data access patterns, high memory bandwidth and computational requirements of sliding window applications, such as Motion Estimation (ME) and Matrix Multiplication (MM), lead to low performance, inefficient soft processor realisations. This paper resolves this issue, showing how by adding support for block data addressing and accelerators for high performance loop execution, performance and resource efficiency over four times better than current best-in-class metrics can be achieved. In addition, it demonstrates the first recorded real-time soft ME estimation realisation for H.263 systems.
Resumo:
The increasing design complexity associated with modern Field Programmable Gate Array (FPGA) has prompted the emergence of 'soft'-programmable processors which attempt to replace at least part of the custom circuit design problem with a problem of programming parallel processors. Despite substantial advances in this technology, its performance and resource efficiency for computationally complex operations remains in doubt. In this paper we present the first recorded implementation of a softcore Fast-Fourier Transform (FFT) on Xilinx Virtex FPGA technology. By employing a streaming processing architecture, we show how it is possible to achieve architectures which offer 1.1 GSamples/s throughput and up to 19 times speed-up against the Xilinx Radix-2 FFT dedicated circuit with comparable cost.
Resumo:
Dissertação mest., Estudos Marinhos e Costeiros, Universidade do Algarve, 2007
Resumo:
Various studies using optical remote sensing in the marine environment have shown the possibilities of spectral discrimination of benthic macro and micro-algae. For in-land water bodies only very recently studies of have explored similar use of optical remote sensing to identify the taxonomic composition of algae and rooted plant communities. The importance of these communities for the functioning of river ecosystems warrants further research. In the study presented here, field spectroscopy is used to assess the possibilities of optically detecting macrophytes in a UK chalk streams. Spectral signatures of four common macrophytes were measured using a hand-held GER1500 spectroradiometer. Despite the strong absorption of near infrared in water, the results show that information on NIR can clearly contribute to the detection of submerged vegetation in shallow UK chalk stream environments. Observed spectra compare well with simulated submerged vegetation spectra, based on water absorption coefficients only. The field investigations, which were performed in the river Wylye, also indicate the confounding effects of specular reflection from riparian vegetation. The results of this study can inform remote sensing studies of the riverine environment using multi-spectral/low altitude sensors. Such larger scale studies will be highly beneficial for monitoring variation in chalk stream bioindicators, such as ranunculus.
Resumo:
This paper describes an MPEG (moving pictures expert group) audio layer II - LFE (lower frequency extension) bit-stream processor targeting DAB (digital audio broadcasting) receivers that will handle the decoding of the frames in a computationally efficient manner to provide a synthesis sub-band filter with the reconstructed sub-band samples. Focus is given to the frequency sample reconstruction part, which handles the re-quantization and re-scaling of the samples once the necessary information is extracted from the frame. The comparison to a direct implementation of the frequency sample reconstruction block is carried out to prove increased computational efficiency.
Resumo:
Interactions between freshwater algae and bacteria were examined in a natural stream habitat and a laboratory model. Field observations provided circumstantial evidence, in statistical correlation for syntrophy between the microbial populations. This relation is probably subject to control by the temperature and pH of the aquatic environment. Several species of a pond community were isolated in axenic culture and tests were performed to determine the nature of mixed species interactions. Isolation procedures and field studies indicated that selected strains of Chlorella and Azotobacter were closely associated in their natural habitat. With the suspected controlling parameters, pH and temperature, held constant, mixed cultures of algae and bacteria were compared to axenic cultures of the same organisms, and a mutual stimulation of growth was observed. A mixed pure culture apparatus was designed in this laboratory to study the algal-bacterial interaction and to test the hypothesis that such an interaction may take place through a diffusable substance or through certain medium-borne conditions, Azotobacter was found to take up a Chlorella-produced exudate, to stimulate protein synthesis, to enhance chlorophyll production and to cause a numerical increase in the interacting Chlorella population. It is not clear whether control is at the environmental, cellular or genetic level in these mixed population interactions. Experimental observations in the model system, taken with field correlations allow one to state that there may be a direct relationship governing the population fluctuations of these two organisms in their natural stream surroundings.
Resumo:
Mathematical predictions of flow conditions along a steep gradient rock bedded stream are examined. Stream gage discharge data and Manning's Equation are used to calculate alternative velocities, and subsequently Froude Numbers, assuming varying values of velocity coefficient, full depth or depth adjusted for vertical flow separation. Comparison of the results with photos show that Froude Numbers calculated from velocities derived from Manning's Equation, assuming a velocity coefficient of 1.30 and full depth, most accurately predict flow conditions, when supercritical flow is defined as Froude Number values above 0.84. Calculated Froude Number values between 0.8 and 1.1 correlate well with observed transitional flow, defined as the first appearance of small diagonal waves. Transitions from subcritical through transitional to clearly supercritical flow are predictable. Froude Number contour maps reveal a sinuous rise and fall of values reminiscent of pool riffle energy distribution.
Resumo:
The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.
Resumo:
A new fast stream cipher, MAJE4 is designed and developed with a variable key size of 128-bit or 256-bit. The randomness property of the stream cipher is analysed by using the statistical tests. The performance evaluation of the stream cipher is done in comparison with another fast stream cipher called JEROBOAM. The focus is to generate a long unpredictable key stream with better performance, which can be used for cryptographic applications.
Resumo:
The focus of this work is to provide authentication and confidentiality of messages in a swift and cost effective manner to suit the fast growing Internet applications. A nested hash function with lower computational and storage demands is designed with a view to providing authentication as also to encrypt the message as well as the hash code using a fast stream cipher MAJE4 with a variable key size of 128-bit or 256-bit for achieving confidentiality. Both nested Hash function and MAJE4 stream cipher algorithm use primitive computational operators commonly found in microprocessors; this makes the method simple and fast to implement both in hardware and software. Since the memory requirement is less, it can be used for handheld devices for security purposes.
Resumo:
The descriptions below and the attached diagrams are outputs of the 1998 LAI Product Development Focus Team workshop on the Value Chain in Product Development. A working group at that workshop was asked to model the product development process: in terms of the phases of product development and their interfaces, boundaries and outputs. Their work has proven to be generally useful to LAI researchers and industry members, and so is formalized here.