995 resultados para Stochastic Integral
Resumo:
We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm. Note to Practitioners-Even though SPSA and SFA have been devised in the literature for continuous optimization problems, our results indicate that they can be powerful techniques even when they are adapted to discrete optimization settings. OCBA is widely recognized as one of the most powerful methods for discrete optimization when the parameter sets are of small or moderate size. On a setting involving a parameter set of size 100, we observe that when the computing budget is small, both SPSA and OCBA show similar performance and are better in comparison to SFA, however, as the computing budget is increased, SPSA and SFA show better performance than OCBA. Both our algorithms also show good performance when the parameter set has a size of 10(8). SFA is seen to show the best overall performance. Unlike most other DPSO algorithms in the literature, an advantage with our algorithms is that they are easily implementable regardless of the size of the parameter sets and show good performance in both scenarios.
Resumo:
We analyze the AlApana of a Carnatic music piece without the prior knowledge of the singer or the rAga. AlApana is ameans to communicate to the audience, the flavor or the bhAva of the rAga through the permitted notes and its phrases. The input to our analysis is a recording of the vocal AlApana along with the accompanying instrument. The AdhAra shadja(base note) of the singer for that AlApana is estimated through a stochastic model of note frequencies. Based on the shadja, we identify the notes (swaras) used in the AlApana using a semi-continuous GMM. Using the probabilities of each note interval, we recognize swaras of the AlApana. For sampurNa rAgas, we can identify the possible rAga, based on the swaras. We have been able to achieve correct shadja identification, which is crucial to all further steps, in 88.8% of 55 AlApanas. Among them (48 AlApanas of 7 rAgas), we get 91.5% correct swara identification and 62.13% correct R (rAga) accuracy.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
Image segmentation is formulated as a stochastic process whose invariant distribution is concentrated at points of the desired region. By choosing multiple seed points, different regions can be segmented. The algorithm is based on the theory of time-homogeneous Markov chains and has been largely motivated by the technique of simulated annealing. The method proposed here has been found to perform well on real-world clean as well as noisy images while being computationally far less expensive than stochastic optimisation techniques