324 resultados para Stipa krylovii steppe


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phytosociological study was conducted in the National Park of Alta Murgia in the Apulia region (Southern Italy) to determine the adverse effects of metal contamination of soils on the distribution of plant communities. The phytosociological analyses have shown a remarkable biodiversity of vegetation on non-contaminated soils, while biodiversity appeared strongly reduced on metal-contaminated soils. The area is naturally covered by a wide steppic grassland dominated by Stipa austroitalica Martinovsky subsp. austroitalica. Brassicaceae such as Sinapis arvensis L. are the dominating species on moderated contaminated soils, whereas spiny species of Asteraceae such as Silybum marianum (L.) Gaertn. and Carduus pycnocephalus L. subsp. pycnocephalus are the dominating vegetation on heavily metal-contaminated soils. The presence of these spontaneous species on contaminated soils suggest their potential for restoration of degraded lands by phytostabilization strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se analiza la relación entre degradación y el uso y manejo de la tierra para ganadería extensiva, de acuerdo al tipo de tenencia de la tierra. El sector elegido se localiza al Oeste de la localidad de las Coloradas, Departamento Catan Lil en la provincia de Neuquén, y comprende una superficie de 9.000 ha; una parte de la misma corresponde a un campo privado y el resto a un sector fiscal ocupado por crianceros. La elección del área de estudio se justifica en el hecho de que este departamento es uno de los más pobres y frágiles de la provincia en cuanto a la potencialidad del ecosistema para uso ganadero y en que en él se dan los distintos tipos de tenencia de la tierra, tanto fiscal como privada y de comunidades indígenas. En el caso de este estudio, se considera un sector ocupado por un campo privado y el resto por crianceros. Del análisis realizado surge que la dinámica y evolución del paisaje responde a las formas de manejo de acuerdo al tipo de tenencia de la tierra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se analiza la relación entre degradación y el uso y manejo de la tierra para ganadería extensiva, de acuerdo al tipo de tenencia de la tierra. El sector elegido se localiza al Oeste de la localidad de las Coloradas, Departamento Catan Lil en la provincia de Neuquén, y comprende una superficie de 9.000 ha; una parte de la misma corresponde a un campo privado y el resto a un sector fiscal ocupado por crianceros. La elección del área de estudio se justifica en el hecho de que este departamento es uno de los más pobres y frágiles de la provincia en cuanto a la potencialidad del ecosistema para uso ganadero y en que en él se dan los distintos tipos de tenencia de la tierra, tanto fiscal como privada y de comunidades indígenas. En el caso de este estudio, se considera un sector ocupado por un campo privado y el resto por crianceros. Del análisis realizado surge que la dinámica y evolución del paisaje responde a las formas de manejo de acuerdo al tipo de tenencia de la tierra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se analiza la relación entre degradación y el uso y manejo de la tierra para ganadería extensiva, de acuerdo al tipo de tenencia de la tierra. El sector elegido se localiza al Oeste de la localidad de las Coloradas, Departamento Catan Lil en la provincia de Neuquén, y comprende una superficie de 9.000 ha; una parte de la misma corresponde a un campo privado y el resto a un sector fiscal ocupado por crianceros. La elección del área de estudio se justifica en el hecho de que este departamento es uno de los más pobres y frágiles de la provincia en cuanto a la potencialidad del ecosistema para uso ganadero y en que en él se dan los distintos tipos de tenencia de la tierra, tanto fiscal como privada y de comunidades indígenas. En el caso de este estudio, se considera un sector ocupado por un campo privado y el resto por crianceros. Del análisis realizado surge que la dinámica y evolución del paisaje responde a las formas de manejo de acuerdo al tipo de tenencia de la tierra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynological investigation of a 410 cm long core section from Tso Kar (33°10'N, 78°E, 4527 m a.s.l.), an alpine lake situated in the arid Ladakh area of NW India at the limit of the present-day Indian summer monsoon, was performed in order to reconstruct post-glacial regional vegetation and climate dynamics. The area was covered with alpine desert vegetation from ca. 15.2 to 14 kyr BP (1 kyr=1000 cal. years), reflecting dry and cold conditions. High influx values of long-distance transported Pinus sylvestris type pollen suggest prevailing air flow from the west and northwest. The spread of alpine meadow communities and local aquatic vegetation is a weak sign of climate amelioration after ca. 14 kyr BP. Pollen data (e.g. influx values of Pinus roxburghii type and Quercus) suggest that this was due to a strengthening of the summer monsoon and the reduced activity of westerly winds. The further spread of Artemisia and species-rich meadows occurred in response to improved moisture conditions between ca. 12.9 and 12.5 kyr BP. The subsequent change towards drier desert-steppe vegetation likely indicates more frequent westerly disturbances and associated snowfalls, which favoured the persistence of alpine meadows on edaphically moist sites. The spread of Chenopodiaceae-dominated vegetation associated with an extremely weak monsoon occurred at ca. 12.2-11.8 kyr BP during the Younger Dryas interstadial. A major increase in humidity is inferred from the development of Artemisia-dominated steppe and wet alpine meadows with Gentianaceae after the late glacial/early Holocene transition in response to the strengthening of the summer monsoon. Monsoonal influence reached maximum activity in the Tso Kar region between ca. 10.9 and 9.2 kyr BP. The subsequent development of the alpine meadow, steppe and desert-steppe vegetation points to a moderate reduction in the moisture supply, which can be linked to the weaker summer monsoon and the accompanying enhancement of the winter westerly flow from ca. 9.2 to 4.8 kyr BP. The highest water levels of Tso Kar around 8 kyr BP probably reflect combined effect of both monsoonal and westerly influence in the region. An abrupt shift towards aridity in the Tso Kar region occurred after ca. 4.8 kyr BP, as evidenced by an expansion of Chenopodiaceae-dominated desert-steppe. Low pollen influx values registered ca. 2.8-1.3 kyr BP suggest scarce vegetation cover and unfavourable growing conditions likely associated with a further weakening of the Indian Monsoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations at a Late Weichselian freshwater basin in northwestern Jutland, Denmark, yielded a fairly rich assemblage of vertebrate remains, mostly bones and teeth of small mammals. The remains are primarily allochthonous and the bones have been subjected to different taphonomic pathways and agents. AMS 14C-dates on terrestrial organic remains provided ages of Middle to Late Allerød time. Identifications revealed the first fossil record in Scandinavia of Rana arvalis, Sorex minutus, Ochotona cf. pusilla, Microtus gregalis, Microtus oeconomus, and Sicista cf. betulinu. Spermophilus cf. major and Desmana moschata, previously found only once and twice respectively, were retrieved, and Sorex araneus and Arvicola terrestris were recovered for the first time beyond the Atlantic chronozone. Ecologically, the Nørre Lyngby small mammal fauna can be characterized by its very high and almost equal proportions of boreal forest and steppe elements followed by a relatively high proportion of tundra elements. The fossil species share a modern area of sympatry north of the Caspian Sea from the river Volga in the west to the southern and western slopes of the Urals. If, however, the large Allerød mammals are added, the fauna is without modern analogues. The Nørre Lyngby fauna can be seen as a last expansion of the North European glacial fauna. Provided that an absolute chronology and a differentiated sea-level curve for the area can be established, the Nørre Lyngby fauna could become important for studies in mammalian dispersal and migration rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground penetrating radar (GPR) and capacitive coupled resistivity (CCR) measurements were conducted in order to image subsurface structures in the Orkhon Valley, Central Mongolia. The data are extended by information from drill cores to the entire transects distinguishing different sedimentary environments in the valley. The Orkhon Valley is part of the high sensitive Steppe region in Central Mongolia, one of the most important cultural landscapes in Central Asia. There, archaeological, geoarchaeological and sedimentological research aims to reconstruct the landscape evolution and the interaction between man and environment during the last millennia since the first settlement. In May 2009 and 2010 geophysical surveys have been conducted including transects with lengths between 1.5 and 30 km crossing the entire valley and a kilometre-scaled grid in the southern part of the investigation area. The geoelectrical and GPR data revealed the existence of two layers characterized by different resistivity values and radar reflectors. The two layers do not only represent material contrasts, but also reflect the influence of sporadic permafrost which occurs in several areas of Mongolia. The results help to reconstruct the evolution of the braided Orkhon River and therefore give important hints to understand the environmental history of the Orkhon Valley.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silty to sandy deposits that are containing large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth in polygonal landscapes, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma deposits up to >50 meters thick. Because of fast incorporation of organic material into syngenetic permafrost during its formation, Yedoma deposits include well-preserved organic matter. Ice-rich deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for future climate warming as increased permafrost thaw is likely to lead to a positive feedback through enhanced greenhouse gas fluxes. Therefore, a detailed assessment of the current Yedoma deposit coverage and its volume is of importance to estimate its potential response to future climate changes. We synthesized the map of the coverage and thickness estimation, which will provide critical data needed for further research. In particular, this preliminary Yedoma map is a great step forward to understand the spatial heterogeneity of Yedoma deposits and its regional coverage. There will be further applications in the context of reconstructing paleo-environmental dynamics and past ecosystems like the mammoth-steppe-tundra, or ground ice distribution including future thermokarst vulnerability. Moreover, the map will be a crucial improvement of the data basis needed to refine the present-day Yedoma permafrost organic carbon inventory, which is assumed to be between 83±12 (Strauss et al., 2013, doi:10.1002/2013GL058088) and 129±30 (Walter Anthony et al., 2014, doi:10.1038/nature13560) gigatonnes (Gt) of organic carbon in perennially-frozen archives. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. For compiling this map, we used (1) maps of the previous Yedoma coverage estimates, (2) included the digitized areas from Grosse et al. (2013) as well as extracted areas of potential Yedoma distribution from additional surface geological and Quaternary geological maps (1.: 1:500,000: Q-51-V,G; P-51-A,B; P-52-A,B; Q-52-V,G; P-52-V,G; Q-51-A,B; R-51-V,G; R-52-V,G; R-52-A,B; 2.: 1:1,000,000: P-50-51; P-52-53; P-58-59; Q-42-43; Q-44-45; Q-50-51; Q-52-53; Q-54-55; Q-56-57; Q-58-59; Q-60-1; R-(40)-42; R-43-(45); R-(45)-47; R-48-(50); R-51; R-53-(55); R-(55)-57; R-58-(60); S-44-46; S-47-49; S-50-52; S-53-55; 3.: 1:2,500,000: Quaternary map of the territory of Russian Federation, 4.: Alaska Permafrost Map). The digitalization was done using GIS techniques (ArcGIS) and vectorization of raster Images (Adobe Photoshop and Illustrator). Data on Yedoma thickness are obtained from boreholes and exposures reported in the scientific literature. The map and database are still preliminary and will have to undergo a technical and scientific vetting and review process. In their current form, we included a range of attributes for Yedoma area polygons based on lithological and stratigraphical information from the original source maps as well as a confidence level for our classification of an area as Yedoma (3 stages: confirmed, likely, or uncertain). In its current version, our database includes more than 365 boreholes and exposures and more than 2000 digitized Yedoma areas. We expect that the database will continue to grow. In this preliminary stage, we estimate the Northern Hemisphere Yedoma deposit area to cover approximately 625,000 km². We estimate that 53% of the total Yedoma area today is located in the tundra zone, 47% in the taiga zone. Separated from west to east, 29% of the Yedoma area is found in North America and 71 % in North Asia. The latter include 9% in West Siberia, 11% in Central Siberia, 44% in East Siberia and 7% in Far East Russia. Adding the recent maximum Yedoma region (including all Yedoma uplands, thermokarst lakes and basins, and river valleys) of 1.4 million km² (Strauss et al., 2013, doi:10.1002/2013GL058088) and postulating that Yedoma occupied up to 80% of the adjacent formerly exposed and now flooded Beringia shelves (1.9 million km², down to 125 m below modern sea level, between 105°E - 128°W and >68°N), we assume that the Last Glacial Maximum Yedoma region likely covered more than 3 million km² of Beringia. Acknowledgements: This project is part of the Action Group "The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness" (funded by the International Permafrost Association (IPA) to J. Strauss) and is embedded into the Permafrost Carbon Network (working group Yedoma Carbon Stocks). We acknowledge the support by the European Research Council (Starting Grant #338335), the German Federal Ministry of Education and Research (Grant 01DM12011 and "CarboPerm" (03G0836A)), the Initiative and Networking Fund of the Helmholtz Association (#ERC-0013) and the German Federal Environment Agency (UBA, project UFOPLAN FKZ 3712 41 106).