889 resultados para Stem cell factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between January 1990 and April 2001, 115 patients received high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) for relapsed or refractory Hodgkin lymphoma (HL). With a median follow-up of 58 months (range, 1 - 175 months), 5-year progression-free survival (PFS) and overall survival (OS) were 46% and 58%, respectively. Twelve patients with primary refractory disease had a 5-year PFS of 41% and OS of 58%, not significantly different from those of the remaining cohort. Early and overall regimen related mortality were 7% and 16%, respectively. Male gender (P = 0.04) and a time to relapse (TTR) < 12 months (P = 0.03) were associated with decreased OS by univariate analysis. In multivariate analysis, TTR < 12 months remained statistically significant (P = 0.04). We have confirmed that HDT and ASCT result in long-term survival for a proportion of patients with relapsed or refractory HL. All patients, including those with primary refractory disease, benefited from HDT and ASCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We isolated a stem cell subpopulation from human lung cancer A549 cells using FACS/Hoechst 33342. This side population (SP), which comprised 24% of the total cell population, totally disappeared after treatment with the selective ABCG 2 inhibitor fumitremorgin C. In a repopulation study, isolated SP and non-SP cells were each able to generate a heterogeneous population of SP and non-SP cells, but this repopulation occurred more rapidly in SP cells than non-SP. An MTT assay and cell cycle distribution analysis reveal a similar profile between SP and non-SP groups. However, in the presence of doxorubicin (DOX) and methotrexate (MTX), SP cells showed significantly lower Annexin V staining when compared to non-SP cells. Taken together, these results demonstrate that SP cells have an active regeneration capacity and high anti-apoptotic activity compared with non-SP cells. Furthermore, our GeneChip data revealed a heightened mRNA expression of ABCG2 and ABCC2 in SP cells. Overall these data explain why the SP of A549 has a unique ability to resist DOX and MTX treatments. Therefore, we suggest that the expression of the ABCG2 transporter plays an important role in the multidrug resistance phenotype of A549 SP cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity of stem cells to regenerate lost tissue cells has gained recognition among physicians. Despite the successful use of blood stem cells for treating blood cancers, other stem cell types have not yet been widely introduced into clinical practice. Therapy options involving stem cells for inner ear diseases consequently have not been implemented. Nonetheless, several reports have recently been published describing the generation of morphologically and immunologically distinctive inner ear cell types-such as hair cells, supporting cells, and spiral ganglion neurons-from stem cells. Although promising, all of these studies still lack functional results regarding hearing restoration or vestibular function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes were first cut and functionalized with a newly developed reaction involving autoclaving and sonication in hydrogen peroxide. The functionalized nanotubes were characterized and evaluated for aqueous solubility. Studies which relate reaction conditions to final carbon nanotube length were conducted. Hydroxyl groups present on the carbon nanotubes served as a platform for a series of addition reactions, with the objective of conjugating streptavidin and fluorescent markers onto the carbon nanotubes. The modified nanotubes were attached onto the surface of biotinylated mesenchymal stem cells, creating a novel, tumor-homing delivery system for photothermal anticancer agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current organ shortage in transplantation medicine stimulates the exploration of new strategies to expand the donor pool including the utilisation of living donors, ABO-incompatible grafts, and xenotransplantation. Preformed natural antibodies (Ab) such as anti-Gal or anti-A/B Ab mediate hyperacute graft rejection and thus represent a major hurdle to the employment of such strategies. In contrast to solid organ transplantation (SOT), ABO blood group incompatibilities are of minor importance in haematopoietic stem cell transplantation (HSCT). Thus, ABO incompatible HSCT may serve as an in vivo model to study carbohydrate antigen (Ag)-mismatched transplantations such as ABO-incompatible SOT or the effect of preformed Ab against Gal in xenotransplantation. This mini-review summarises our clinical and experimental studies performed with the support of the Swiss National Science Foundation program on Implants and Transplants (NFP-46). Part 1 describes data on the clinical outcome of ABO-incompatible HSCT, in particular the incidence of several immunohaematological complications, acute graft-versus-host-disease (GvHD), and the overall survival. Part 2 summarises the measurements of anti-A/B Ab in healthy blood donors and ABO-incompatible HSCT using a novel flow cytometry based method and the potential mechanisms responsible for the loss of anti-A/B Ab observed following minor ABO-incompatible HSCT, ie the occurrence of humoral tolerance. Part 3 analyses the potential of eliminating Gal expression as well as specific complement inhibitors such as dextran sulfate and synthetic tyrosine analogues to protect porcine endothelial cells from xenoreactive Ab-mediated damage in vitro and in a hamster-to-rat heart transplantation model. In conclusion, due to similarities of the immunological hurdles of ABO incompatible transplantations and xenotransplantation, the knowledge obtained from both fields might lead to new strategies to overcome humoral rejection in transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this single-center, cross-sectional study, we evaluated 44 very long-term survivors with a median follow-up of 17.5 years (range, 11-26 years) after hematopoietic stem cell transplantation. We assessed the telomere length difference in human leukocyte antigen-identical donor and recipient sibling pairs and searched for its relationship with clinical factors. The telomere length (in kb, mean +/- SD) was significantly shorter in all recipient blood cells compared with their donors' blood cells (P < .01): granulocytes (6.5 +/- 0.9 vs 7.1 +/- 0.9), naive/memory T cells (5.7 +/- 1.2 vs 6.6 +/- 1.2; 5.2 +/- 1.0 vs 5.7 +/- 0.9), B cells (7.1 +/- 1.1 vs 7.8 +/- 1.1), and natural killer/natural killer T cells (4.8 +/- 1.0 vs 5.6 +/- 1.3). Chronic graft-versus-host disease (P < .04) and a female donor (P < .04) were associated with a greater difference in telomere length between donor and recipient. Critically short telomeres have been described in degenerative diseases and secondary malignancies. If this hypothesis can be confirmed, identification of recipients at risk for cellular senescence could become part of monitoring long-term survivors after hematopoietic stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Nursing in 'live islands' and routine high dose intravenous immunoglobulins after allogeneic hematopoietic stem cell transplantation were abandoned by many teams in view of limited evidence and high costs. METHODS: This retrospective single-center study examines the impact of change from nursing in 'live islands' to care in single rooms (SR) and from high dose to targeted intravenous immunoglobulins (IVIG) on mortality and infection rate of adult patients receiving an allogeneic stem cell or bone marrow transplantation in two steps and three time cohorts (1993-1997, 1997-2000, 2000-2003). RESULTS: Two hundred forty-eight allogeneic hematopoetic stem cell transplantations were performed in 227 patients. Patient characteristics were comparable in the three cohorts for gender, median age, underlying disease, and disease stage, prophylaxis for graft versus host disease (GvHD) and cytomegalovirus constellation. The incidence of infections (78.4%) and infection rates remained stable (rates/1000 days of neutropenia for sepsis 17.61, for pneumonia 6.76). Cumulative incidence of GvHD and transplant-related mortality did not change over time. CONCLUSIONS: Change from nursing in 'live islands' to SR and reduction of high dose to targeted IVIG did not result in increased infection rates or mortality despite an increase in patient age. These results support the current practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addback of donor T cells following T cell-depleted stem cell transplantation (SCT) can accelerate immune reconstitution and be effective against relapsed malignancy. After haploidentical SCT, a high risk of graft-versus-host disease (GVHD) essentially precludes this option, unless the T cells are first depleted of alloreactive precursor cells. Even then, the risks of severe GVHD remain significant. To increase the safety of the approach and thereby permit administration of larger T cell doses, we used a suicide gene, inducible caspase 9 (iCasp9), to transduce allodepleted T cells, permitting their destruction should administration have adverse effects. We made a retroviral vector encoding iCasp9 and a selectable marker (truncated CD19). Even after allodepletion (using anti-CD25 immunotoxin), donor T cells could be efficiently transduced, expanded, and subsequently enriched by CD19 immunomagnetic selection to >90% purity. These engineered cells retained antiviral specificity and functionality, and contained a subset with regulatory phenotype and function. Activating iCasp9 with a small-molecule dimerizer rapidly produced >90% apoptosis. Although transgene expression was downregulated in quiescent T cells, iCasp9 remained an efficient suicide gene, as expression was rapidly upregulated in activated (alloreactive) T cells. We have demonstrated the clinical feasibility of this approach after haploidentical transplantation by scaling up production using clinical grade materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.