957 resultados para Statistical approach
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 × 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture–recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture–recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future climate change impact assessment of hydrological resources. The four proposed statistical downscaling models use large-scale predictors (derived from climate model outputs or reanalysis data) that characterize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics. The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling) and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscaling). For each statistical model and each spatial resolution, three temporal resolutions were considered, namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated approach’. The results show that flow sensitivity to atmospheric factors is significantly different between nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed better than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees method showed higher and less variable R2 values to downscale the hydrological variability in both nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fortnightly median flows were projected based on the regional downscaling approach. The results suggest a global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, whatever the considered scenario. The discussion considers the performance of each statistical method for downscaling flow at different spatial and temporal scales as well as the relationship between atmospheric processes and flow variability.
Resumo:
The conventional method for the assessment of acute dermal toxicity (OECD Test Guideline 402, 1987) uses death of animals as an endpoint to identify the median lethal dose (LD50). A new OECD Testing Guideline called the dermal fixed dose procedure (dermal FDP) is being prepared to provide an alternative to Test Guideline 402. In contrast to Test Guideline 402, the dermal FDP does not provide a point estimate of the LD50, but aims to identify that dose of the substance under investigation that causes clear signs of nonlethal toxicity. This is then used to assign classification according to the new Globally Harmonised System of Classification and Labelling scheme (GHS). The dermal FDP has been validated using statistical modelling rather than by in vivo testing. The statistical modelling approach enables calculation of the probability of each GHS classification and the expected numbers of deaths and animals used in the test for imaginary substances with a range of LD50 values and dose-response curve slopes. This paper describes the dermal FDP and reports the results from the statistical evaluation. It is shown that the procedure will be completed with considerably less death and suffering than guideline 402, and will classify substances either in the same or a more stringent GHS class than that assigned on the basis of the LD50 value.
Statistical evaluation of the fixed concentration procedure for acute inhalation toxicity assessment
Resumo:
The conventional method for the assessment of acute inhalation toxicity (OECD Test Guideline 403, 1981) uses death of animals as an endpoint to identify the median lethal concentration (LC50). A new OECD Testing Guideline called the Fixed Concentration Procedure (FCP) is being prepared to provide an alternative to Test Guideline 403. Unlike Test Guideline 403, the FCP does not provide a point estimate of the LC50, but aims to identify an airborne exposure level that causes clear signs of nonlethal toxicity. This is then used to assign classification according to the new Globally Harmonized System of Classification and Labelling scheme (GHS). The FCP has been validated using statistical simulation rather than byin vivo testing. The statistical simulation approach predicts the GHS classification outcome and the numbers of deaths and animals used in the test for imaginary substances with a range of LC50 values and dose response curve slopes. This paper describes the FCP and reports the results from the statistical simulation study assessing its properties. It is shown that the procedure will be completed with considerably less death and suffering than Test Guideline 403, and will classify substances either in the same or a more stringent GHS class than that assigned on the basis of the LC50 value.
Resumo:
The fixed-dose procedure (FDP) was introduced as OECD Test Guideline 420 in 1992, as an alternative to the conventional median lethal dose (LD50) test for the assessment of acute oral toxicity (OECD Test Guideline 401). The FDP uses fewer animals and causes less suffering than the conventional test, while providing information on the acute toxicity to allow substances to be ranked according to the EU hazard classification system. Recently the FDP has been revised, with the aim of providing further reductions and refinements, and classification according to the criteria of the Globally Harmonized Hazard Classification and Labelling scheme (GHS). This paper describes the revised FDP and analyses its properties, as determined by a statistical modelling approach. The analysis shows that the revised FDP classifies substances for acute oral toxicity generally in the same, or a more stringent, hazard class as that based on the LD50 value, according to either the GHS or the EU classification scheme. The likelihood of achieving the same classification is greatest for substances with a steep dose-response curve and median toxic dose (TD50) close to the LD50. The revised FDP usually requires five or six animals with two or fewer dying as a result of treatment in most cases.
Resumo:
Pharmacogenetic trials investigate the effect of genotype on treatment response. When there are two or more treatment groups and two or more genetic groups, investigation of gene-treatment interactions is of key interest. However, calculation of the power to detect such interactions is complicated because this depends not only on the treatment effect size within each genetic group, but also on the number of genetic groups, the size of each genetic group, and the type of genetic effect that is both present and tested for. The scale chosen to measure the magnitude of an interaction can also be problematic, especially for the binary case. Elston et al. proposed a test for detecting the presence of gene-treatment interactions for binary responses, and gave appropriate power calculations. This paper shows how the same approach can also be used for normally distributed responses. We also propose a method for analysing and performing sample size calculations based on a generalized linear model (GLM) approach. The power of the Elston et al. and GLM approaches are compared for the binary and normal case using several illustrative examples. While more sensitive to errors in model specification than the Elston et al. approach, the GLM approach is much more flexible and in many cases more powerful. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis is challenged by the fact that a certain amount of the interpretation of the data is left to the subjective choices of the user, and it has been argued that the method performs poorly in simulation studies. More rigorous statistical methods based on coalescence theory have been developed. However, these methods may also be challenged by computational problems or poor model choice. In this review, we will describe the development of statistical methods in phylogeographic analysis, and discuss some of the challenges facing these methods.
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 x 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture-recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture-recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
This paper aims to introduce a knowledge-based managemental prototype entitled Eþ for environmental-conscious construction relied on an integration of current environmental management tools in construction area. The overall objective of developing the Eþ prototype is to facilitate selectively reusing the retrievable knowledge in construction engineering and management areas assembled from previous projects for the best practice in environmental-conscious construction. The methodologies adopted in previous and ongoing research related to the development of the Eþ belong to the operations research area and the information technology area, including literature review, questionnaire survey and interview, statistical analysis, system analysis and development, experimental research and simulation, and so on. The content presented in this paper includes an advanced Eþ prototype, a comprehensive review of environmental management tools integrated to the Eþ prototype, and an experimental case study of the implementation of the Eþ prototype. It is expected that the adoption and implementation of the Eþ prototype can effectively facilitate contractors to improve their environmental performance in the lifecycle of projectbased construction and to reduce adverse environmental impacts due to the deployment of various engineering and management processes at each construction stage.
Resumo:
A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.
Resumo:
Transient neural assemblies mediated by synchrony in particular frequency ranges are thought to underlie cognition. We propose a new approach to their detection, using empirical mode decomposition (EMD), a data-driven approach removing the need for arbitrary bandpass filter cut-offs. Phase locking is sought between modes. We explore the features of EMD, including making a quantitative assessment of its ability to preserve phase content of signals, and proceed to develop a statistical framework with which to assess synchrony episodes. Furthermore, we propose a new approach to ensure signal decomposition using EMD. We adapt the Hilbert spectrum to a time-frequency representation of phase locking and are able to locate synchrony successfully in time and frequency between synthetic signals reminiscent of EEG. We compare our approach, which we call EMD phase locking analysis (EMDPL) with existing methods and show it to offer improved time-frequency localisation of synchrony.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.