970 resultados para Statistical Method
Resumo:
Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 1–5 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.
Resumo:
The purpose of this study was to examine and expand understanding concerning young Finnish registered nurses (RN) with an intention to leave the profession and the related variables, specifically when that intention has emerged before the age of 30. The overall goal of the study was to develop a conceptual model in relation to young RNs’ intention to leave the profession. Suggestions for policymakers, nurse leaders and nurse managers are presented for how to retain more young RNs in the nursing workforce. Suggestions for future nursing research are also provided. Phase I consists of two sequential integrative literature reviews of 75 empirical articles concerning nurses’ intention to leave the profession. In phase II, data had been collected as part of the Nurses’ Early Exit (NEXT) study, using the BQ-12 structured postal questionnaire. A total of 147 young RNs participated in the study. The data were analysed with statistical methods. In phase III, firstly, an in-depth interpretive case study was conducted in order to understand how young RNs explain and make sense of their intention to leave the profession. The data in this study consisted of longitudinal career stories by three young RNs. The data was analysed by using narrative holistic-content and thematic methods. Secondly, a total of 15 young RNs were interviewed in order to explore in-depth their experiences concerning organizational turnover and their intent to leave the profession. The data was analysed using conventional content analysis. Based on earlier research, empirical research on the young RNs intention to leave the profession is scarce. Nurses’ intention to leave the profession has mainly been studied with quantitative descriptive studies, conducted with survey questionnaires. Furthermore, the quality of previous studies varies considerably. Moreover, nurses’ intention to leave the profession seems to be driven by a number of variables. According to the survey study, 26% of young RNs had often considered giving up nursing completely and starting a different kind of job during the course of the previous year. Many different variables were associated with an intention to leave the profession (e.g. personal burnout, job dissatisfaction). According to the in-depth inquiries, poor nursing practice environments and a nursing career as a ‘second-best’ or serendipitous career choice were themes associated with young RNs’ intention to leave the profession. In summary, young RNs intention to leave the profession is a complex phenomenon with multiple associated variables. These findings suggest that policymakers, nurse leaders and nurse managers should enable improvements in nursing practice environments in order to retain more young RNs. These improvements can include, for example, adequate staffing levels, balanced nursing workloads, measures to reduce work-related stress as well as possibilities for advancement and development. Young RNs’ requirements to provide high-quality and ethical nursing care must be recognized in society and health-care organizations. Moreover, sufficient mentoring and orientation programmes should be provided for all graduate RNs. Future research is needed into whether the motive for choosing a nursing career affects the length of the tenure in the profession. Both quantitative and in-depth research is needed for the comprehensive development of nursing-turnover research.
Resumo:
Thirty-seven patients were submitted to kidney transplantation after transfusion at 2-week intervals with 4-week stored blood from their potential donors. All patients and donors were typed for HLA-A-B and DR antigens. The patients were also tested for cytotoxic antibodies against donor antigens before each transfusion. The percentage of panel reactive antibodies (PRA) was determined against a selected panel of 30 cell donors before and after the transfusions. The patients were immunosuppressed with azathioprine and prednisone. Rejection crises were treated with methylprednisolone. The control group consisted of 23 patients who received grafts from an unrelated donor but who did not receive donor-specific pretransplant blood transfusion. The incidence and reversibility of rejection episodes, allograft loss caused by rejection, and patient and graft survival rates were determined for both groups. Non-parametric methods (chi-square and Fisher tests) were used for statistical analysis, with the level of significance set at P<0.05. The incidence and reversibility of rejection crises during the first 60 post-transplant days did not differ significantly between groups. The actuarial graft and patient survival rates at five years were 56% and 77%, respectively, for the treated group and 39.8% and 57.5% for the control group. Graft loss due to rejection was significantly higher in the untreated group (P = 0.0026) which also required more intense immunosuppression (P = 0.0001). We conclude that tranfusions using stored blood have the immunosuppressive effect of fresh blood transfusions without the risk of provoking a widespread formation of antibodies. In addition, this method permits a reduction of the immunosuppressive drugs during the process without impairing the adequate functioning of the renal graft
Resumo:
The influence of some process variables on the productivity of the fractions (liquid yield times fraction percent) obtained from SCFE of a Brazilian mineral coal using isopropanol and ethanol as primary solvents is analyzed using statistical techniques. A full factorial 23 experimental design was adopted to investigate the effects of process variables (temperature, pressure and cosolvent concentration) on the extraction products. The extracts were analyzed by the Preparative Liquid Chromatography-8 fractions method (PLC-8), a reliable, non destructive solvent fractionation method, especially developed for coal-derived liquids. Empirical statistical modeling was carried out in order to reproduce the experimental data. Correlations obtained were always greater than 0.98. Four specific process criteria were used to allow process optimization. Results obtained show that it is not possible to maximize both extract productivity and purity (through the minimization of heavy fraction content) simultaneously by manipulating the mentioned process variables.
Resumo:
New microbiological methods have been developed and commercialized, but their performance must be guaranteed. The aim of the present study was to evaluate the PetrifilmTM and TEMPO® systems compared to the conventional method for counting microorganisms in pasteurized milk. A total of 141 samples of pasteurized milk were analyzed by counting mesophilic aerobic, Coliforms at 35 ºC, Coliforms at 45 ºC, and Escherichia coli microorganisms. High correlation was found between the methods for counting Coliforms at 35 ºC, but low correlation was found for counting mesophilic aerobic, Coliforms at 45 ºC, and Escherichia coli. No significant statistical difference was found among the three methods for counting Coliforms at 35 ºC; however, the mean counts of mesophilic aerobic, Coliforms at 45 ºC, and Escherichia coli showed significant statistical difference. PetrifilmTM and TEMPO® systems had satisfactory results for Coliforms at 35 ºC in pasteurized milk but low performance for mesophilic aerobic, Coliforms at 45 ºC and Escherichia coli.
Resumo:
Four problems of physical interest have been solved in this thesis using the path integral formalism. Using the trigonometric expansion method of Burton and de Borde (1955), we found the kernel for two interacting one dimensional oscillators• The result is the same as one would obtain using a normal coordinate transformation, We next introduced the method of Papadopolous (1969), which is a systematic perturbation type method specifically geared to finding the partition function Z, or equivalently, the Helmholtz free energy F, of a system of interacting oscillators. We applied this method to the next three problems considered• First, by summing the perturbation expansion, we found F for a system of N interacting Einstein oscillators^ The result obtained is the same as the usual result obtained by Shukla and Muller (1972) • Next, we found F to 0(Xi)f where A is the usual Tan Hove ordering parameter* The results obtained are the same as those of Shukla and Oowley (1971), who have used a diagrammatic procedure, and did the necessary sums in Fourier space* We performed the work in temperature space• Finally, slightly modifying the method of Papadopolous, we found the finite temperature expressions for the Debyecaller factor in Bravais lattices, to 0(AZ) and u(/K/ j,where K is the scattering vector* The high temperature limit of the expressions obtained here, are in complete agreement with the classical results of Maradudin and Flinn (1963) .
Resumo:
Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins
Resumo:
Bien que les champignons soient régulièrement utilisés comme modèle d'étude des systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina (levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre question concerne la position phylogénétique des nucléariides, un groupe d'eucaryotes amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de taxons et l'utilisation de six gènes nucléaires seulement. Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests statistiques appliqués à des assemblages de données phylogénomiques nucléaires et mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires important (plus de cent protéines) et avec supports statistiques concluants, que le genre Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le regroupement conflictuel des Schizosaccharomyces avec les Saccharomycotina, venant des données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: l'attraction des longues branches (ALB), un artéfact menant au regroupement d'espèces dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données nucléaires, nous démontrons avec support statistique significatif que les nucleariides constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support statistique significatif, bien que ne pouvant placer tous les membres du groupe avec confiance. Nos résultats remettent en cause des aspects d'une récente reclassification taxonomique des zygomycètes et de leurs voisins, les chytridiomycètes. Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - sites HH); ces sites sont connus comme contribuant significativement au phénomène d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. Néanmoins, et de façon générale, la manipulation de données préalable à l'analyse est loin d’être idéale. Les développements futurs devront viser l'intégration de l'identification et la pondération des sites HH au processus d'inférence phylogénétique lui-même.
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.
Resumo:
The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
This paper compares statistical technique of paraphrase identification to semantic technique of paraphrase identification. The statistical techniques used for comparison are word set and word-order based methods where as the semantic technique used is the WordNet similarity matrix method described by Stevenson and Fernando in [3].
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing