856 resultados para Static Bending
Resumo:
A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.
Resumo:
The creep and relaxation behaviour of laminated glass fibre reinforced plastics (GRP) in three-point bending were studied both experimentally and analytically. Creep and relaxation experiments were carried out on eight types of specimens, consisting of glass fibre fabric reinforced epoxy beams. While the bending deflexion and creep strains were measured in the creep tests, the load and relaxation strain were recorded in the relaxation tests. Marked creep effects were seen in the tests, where the environment temperature was 50°C and the period of the measurement was 60 min. An attempt to predict the creep deflexion and relaxation behaviour was made. The transverse shear effect on creep deflexion was taken into account. The predicted results were compared with experimental ones. They were found to be in reasonable agreement, but the linearization assumption, upon which the relaxation behaviour analysis was based, appears to lead to larger inaccuracies in the results.
Resumo:
A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
In 1980 the Beijing Observatory had successively observed sevesal rare completely closed ring prominences whose ring plane was approximately parallel to the solar surface with a characteristic life about 1—2 days. In this paper we discuss the static equilibrium of this kind of horizontal ring plasma under the simultaneous actions of magnetic force, gravity and pressure gradients. Assuming ring plasma with axisymmetry and rectangular plasma cross-section and adopting closed magnetic field boundary condition from the basic equations we obtain the exact zero order general solutions for magnetic field (force-free field) and density (pressure). We further obtain an eigen-solution for the zero order magnetic field and density as well as the first order magnetic field, thus giving a kind of the possible distribution of magnetic field and density for the horizontal closed ring prominence. The closed magnetic structure of ring prominence as presented in this paper, has no link with the force lines of the outside corona magnetic field. This is helpful to explain the great temperature difference between prominenee and corona.
Resumo:
Laser bending mechanism is remarked, and its essence is the temperature gradient mechanism. The reverse bending and the thickened mechanisms are included in the temperature gradient mechanism because they are only different phenomena based on different thickness of the material. Experimental result shows that there is a kind of un-convention temperature distribution in the limit thickness specimen under laser irradiation. This phenomenon cannot be explained by the classical Fourier Law and is defined as Pan-Fourier effect in order to explain laser bending mechanism further.
Resumo:
A dynamic 3D pore-scale network model is formulated for investigating the effect of interfacial tension and oil-water viscosity during chemical flooding. The model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, while the static model with conventional invasion percolation algorithm incorporates the capillary pressure only. From comparisons of simulation results from these models. it indicates that the static pore scale network model can be used successfully when the capillary number is low. With the capillary increases due to the enhancement of water viscosity or decrease of interfacial tension, only the quasi-static and dynamic model can give insight into the displacement mechanisms.