911 resultados para Stability analysis
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11
Resumo:
Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.
Resumo:
POWERENG 2011
Resumo:
EFTA 2009
Resumo:
ICEM 2010
Resumo:
Rayleigh-Marangoni-B,nard instability in a system consisting of a horizontal liquid layer and its own vapor has been investigated. The two layers are separated by a deformable evaporation interface. A linear stability analysis is carried out to study the convective instability during evaporation. In previous works, the interface is assumed to be under equilibrium state. In contrast with previous works, we give up the equilibrium assumption and use Hertz-Knudsen's relation to describe the phase change under non-equilibrium state. The influence of Marangoni effect, gravitational effect, degree of non-equilibrium and the dynamics of the vapor on the instability are discussed.
Resumo:
This thesis covers four different problems in the understanding of vortex sheets, and these are presented in four chapters.
In Chapter 1, free streamline theory is used to determine the steady solutions of an array of identical, hollow or stagnant core vortices in an inviscid, incompressible fluid. Assuming the array is symmetric to rotation through π radians about an axis through any vortex centre, there are two solutions or no solutions depending on whether A^(1/2)/L is less than or greater than 0.38 where A is the area of the vortex and L is the separation distance. Stability analysis shows that the more deformed shape is unstable to infinitesimal symmetric disturbances which leave the centres of the vortices undisplaced.
Chapter 2 is concerned with the roll-up of vortex sheets in homogeneous fluid. The flow over conventional and ring wings is used to test the method of Fink and Soh (1974). Despite modifications which improve the accuracy of the method, unphysical results occur. A possible explanation for this is that small scales are important and an alternate method based on "Cloud-in-Cell" techniques is introduced. The results show small scale growth and amalgamation into larger structures.
The motion of a buoyant pair of line vortices of opposite circulation is considered in Chapter 3. The density difference between the fluid carried by the vortices and the fluid outside is considered small, so that the Boussinesq approximation may be used. A macroscopic model is developed which shows the formation of a detrainment filament and this is included as a modification to the model. The results agree well with the numerical solution as developed by Hill (1975b) and show that after an initial slowdown, the vortices begin to accelerate downwards.
Chapter 4 reproduces completely a paper that has already been published (Baker, Barker, Bofah and Saffman (1974)) on the effect of "vortex wandering" on the measurement of velocity profiles of the trailing vortices behind a wing.
Resumo:
This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.
Resumo:
提出了一种利用两种不同温度系数的光纤光栅对来对解调仪的不稳定性进行改进的方法,并进行了理论分析,研究了影响该解调仪稳定性的几个因素。将所研制的传感器布设在东海大桥上,组成传感网络,并用改进后的光纤光栅解调系统对传感器的信号进行解调。在大桥竣工测试时,该传感解调系统表现出较好的性能。
Análise global da estabilidade termodinâmica de misturas: um estudo com o método do conjunto gerador
Resumo:
O cálculo do equilíbrio de fases é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Mas para resolvê-lo é aconselhável que se estude a priori a estabilidade termodinâmica do sistema, a qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. Tal problema pode ser abordado como um problema de otimização, conhecido como a minimização da função distância do plano tangente à energia livre de Gibbs molar, onde modelos termodinâmicos, de natureza não convexa e não linear, são utilizados para descrevê-lo. Esse fato tem motivado um grande interesse em técnicas de otimização robustas e eficientes para a resolução de problemas relacionados com a termodinâmica do equilíbrio de fases. Como tem sido ressaltado na literatura, para proporcionar uma completa predição do equilíbrio de fases, faz-se necessário não apenas a determinação do minimizador global da função objetivo do teste de estabilidade, mas também a obtenção de todos os seus pontos estacionários. Assim, o desenvolvimento de metodologias para essa tarefa desafiadora tem se tornado uma nova área de pesquisa da otimização global aplicada à termodinâmica do equilíbrio, com interesses comuns na engenharia química e na engenharia do petróleo. O foco do presente trabalho é uma nova metodologia para resolver o problema do teste de estabilidade. Para isso, usa-se o chamado método do conjunto gerador para realizar buscas do tipo local em uma rede de pontos previamente gerada por buscas globais efetuadas com uma metaheurística populacional, no caso o método do enxame de partículas.Para se obter mais de um ponto estacionário, minimizam-se funções de mérito polarizadas, cujos pólos são os pontos previamente encontrados. A metodologia proposta foi testada na análise de quatorze misturas polares previamente consideradas na literatura. Os resultados mostraram que o método proposto é robusto e eficiente a ponto de encontrar, além do minimizador global, todos os pontos estacionários apontados previamente na literatura, sendo também capaz de detectar, em duas misturas ternárias estudadas, pontos estacionários não obtidos pelo chamado método de análise intervalar, uma técnica confiável e muito difundida na literatura. A análise do teste de estabilidade pela simples utilização do método do enxame de partículas associado à técnica de polarização mencionada acima, para a obtenção de mais de um ponto estacionário (sem a busca local feita pelo método do conjunto gerador em uma dada rede de pontos), constitui outra metodologia para a resolução do problema de interesse. Essa utilização é uma novidade secundária deste trabalho. Tal metodologia simplificada exibiu também uma grande robustez, sendo capaz de encontrar todos os pontos estacionários pesquisados. No entanto, quando comparada com a abordagem mais geral proposta aqui, observou-se que tal simplificação pode, em alguns casos onde a função de mérito apresenta uma geometria mais complexa, consumir um tempo de máquina relativamente grande, dessa forma é menos eficiente.
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
Spatiotemporal instabilities in nonlinear Kerr media with arbitrary higher-order dispersions are studied by use of standard linear-stability analysis. A generic expression for instability growth rate that unifies and expands on previous results for temporal, spatial, and spatiotemporal instabilities is obtained. It is shown that all odd-order dispersions contribute nothing to instability, whereas all even-order dispersions not only affect the conventional instability regions but may also lead to the appearance of new instability regions. The role of fourth-order dispersion in spatiotemporal instabilities is studied exemplificatively to demonstrate the generic results. Numerical simulations confirm the obtained analytic results. (C) 2002 Optical Society of America.
Resumo:
在“神光-Ⅱ”装置上进行先进高能多功能激光束系统(简称第九路)研制工程中,由于在原ICF靶室上又增加了输入“汤姆逊探针光”和“X光背光照明探针光”的锥形真空套筒及其终端光学元件,导致原有靶室结构的变化,可能会引入新的不稳定因素.通过有限元分析方法,建立有限元分析模型,进行优化设计.通过位移传感器测量结果可知,第九路终端光学元件径向窜动所引起的打靶误差最大值为2.110 μm,小于“神光-Ⅱ”靶场终端光学系统的最大允许误差值7.785 μm.