984 resultados para Sponge Larva
Resumo:
This Microreview seeks to highlight the molecular diversity present in marine organisms, and illustrate by example some of the challenges encountered in exploring this resource. Marine natural products exhibit an impressive array of structural motifs, many of which are derived from biosynthetic pathways that are uniquely marine, Most importantly some marine metabolites possess noteworthy biological activities, activities that have potential application outside marine ecosystems, such as antibiotics, antiparasitics, anticancer agents etc... The isolation, spectroscopic characterisation and assignment of stereostructures to these unusual metabolites is both challenging and rewarding. Examples featured in this Microreview follow a common theme in that they are all recent accounts of the isolation of natural products from Australian marine sponges, carried out in the laboratories of the author. In addition to presenting brief comments on specific structure elucidation strategies, an effort is made to emphasize techniques for solving stereochemical issues, as well as to speculate on the biosynthetic origins of some of these exotic marine natural products.
Resumo:
The C-21 bisfuranoterpene (-)-isotetradehydrofurospongin-1 (6), previously isolated from a Western Australian Spongia sp., has been reisolated from a specimen of Spirastrella papilosa collected during scientific trawling operations in the Great Australian Eight. A 2D NMR analysis of 6 has prompted reassignment of the published structure 5, while degradation and chiral HPLC analysis have allowed determination of the absolute stereochemistry.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
Bioassay-directed fractionation of two southern Australian sponges, Phoriospongia sp. and Callyspongia bilamellata, yielded two new nematocidal depsipeptides, identified as phoriospongins A (1) and B (2). The structures of the phoriospongins were determined by detailed spectroscopic analysis and comparison with the previously reported sponge depsipeptide cyclolithistide A (3), as well as ESIMS and HPLC analysis of acid hydrolysates. It is noteworthy that the unique and yet structurally related metabolites 1-3 are found in sponges spanning three taxonomic orders, Poescilosclerida, Haplosclerida, and Lithistida.
Resumo:
Chetoneura shennonggongensis Amorim & Niu, sp. n., inhabiting caves in East China, is described based on the adult male and female, plus larva. Chetoneura Colless, previously associated with Orfelia and known from a single species from caves in Malaysia, is formally transferred to the Keroplatini. This is the first description of the larva and of the general biology of the genus. The larva of this new species is suspended in a roughly horizontal hammock of silken threads amidst mucous coated snare threads from the roof of caves, but is not bioluminescent as some species of other genera in Keroplatidae ( e. g., Arachnocampa, Keroplatus, and Orfelia). A key to separate both species of the genus is provided. The position of the genus within the Keroplatini is considered. Chetoneura is considered to be closely related to a clade containing Heteropterna and Ctenoceridion.
Resumo:
Schejter, L. and Mantelatto, F.L. 2011. Shelter association between the hermit crab Sympagurus dimorphus and the zoanthid Epizoanthus paguricola in the southwestern Atlantic Ocean. -Acta Zoologica (Stockholm) 92: 141-149. The available literature on zoanthid-hermit crab associations deals only with records of this phenomenon, providing no detailed information. We describe, for the first time, the shell-like colonies of Epizoanthus paguricola associated with the hermit crab Sympagurus dimorphus from benthic samples taken in the Argentine Sea, between 85 and 131 m depth, and provide information about morphometric relationships between the hermits and the zoanthids. In total, 260 specimens (137 males and 123 females) of S. dimorphus were collected, 240 (92.3%) of which were living in symbiosis with E. paguricola. The remaining 20 (7.7%) were living inside gastropod shells. As the initial structure of the pseudoshell, 12 different gastropod species were found (all were almost totally covered with colonies of E. paguricola). The hermit crab lives in the spiral cavity inside the soft colony, which seemed to be slightly different depending on the initial gastropod. Aperture pseudoshell morphology did not seem to be related to the sex of the hermit crab host, although males showed larger apertures for a given colony size. This fact is probably related to a larger size of male`s cheliped (sexual dimorphic character) used like a gastropod operculum and that may serve as a template for the growing of the aperture pseudoshell edge. The number of epizoanthid polyps per colony increased in relation to the weight of the colony and to the size of the hermit crab. A process of selection of the initial shell was evident, because species of Naticidae were not the most common gastropods in this benthic community, but were those most used by hermit crabs (> 60%). The puzzling association between hermit crab, shell and zoanthid presumably occurs during the hermit juvenile phase, when the crab occupies a small shell, and a zoanthid larva settles on it. Given the close relationship between S. dimorphus and E. paguricola found in this region, we support the idea that due to the low availability of adequate gastropod shells for hermit life cycle, this association allows the establishment and the continuity of the hermit crab population in the studied area.
Resumo:
Apart from their veterinary importance, the hookworms Ancylostoma caninum, Ancylostoma braziliense and Ancylostoma caninum are also capable of causing zoonotic disease in humans. A highly sensitive and species-specific PCR-RFLP technique was utilised to detect and differentiate the various canine Ancylostoma spp directly from eggs in faeces. This technique was utilised to screen 101 canine faecal samples from parasite endemic tea growing communities in Assam, India, as part as an ongoing epidemiological investigation into canine parasitic zoonoses. The prevalence of hookworms in dogs was found to be 98% using a combination of PCR and conventional microscopy. Overall, 36% of dogs were found positive for single hookworm infections with A. caninum, 24% positive for single infections with A. braziliense and 38% had mixed infections with both A. caninum and A. braziliense. No dogs were found positive for A. ceylanicum in the community under study. The high prevalence of A. caninum and A. braziliense in dogs in this community may account for the high incidence of cutaneous larva migrans (CLM) observed among the human population residing at the tea estates. The PCR-RFLP technique described herein allows epidemiological screening of canine hookworms to be conducted rapidly, with ease and accuracy, and has the potential to be applied to a number of different clinical, pharmacological and epidemiological situations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although well recognized and studied in developed countries, canine parasitic zoonoses pose a lowly prioritized public health problem in developing countries such as India, where conditions are conducive for transmission. A study of the most recent parasite survey determining prevalence and epidemiology of canine parasitic zoonoses among tea-growing communities of northeast India demonstrated the endemicity of the problem. This particular study serves as a model using conventional, as well as molecular parasitological, tools to provide novel insights into the role of dogs as mechanical transmitters of human parasites such as Ascaris and Trichuris, and discusses the risks dogs pose with regards to zoonotic transmission of hookworms and Giardia.
Resumo:
Variation in larval quality has been shown to strongly affect the post-metamorphic performance of a wide range of marine invertebrate species. Extending the larval period of non-feeding larvae strongly affects post-metamorphic survival and growth in a range of species. These 'carry-over' effects are assumed to be due to changes in larval energetic reserves but direct tests are surprisingly rare. Here, we examine the energetic costs ( relative to the costs of metamorphosis) of extending the larval period of the colonial ascidian Diplosoma listerianum. We also manipulated larval activity levels and compared the energy consumption rates of swimming larvae and inactive larvae. Larval swimming was, energetically, very costly relative to either metamorphosis or merely extending the larval period. At least 25% of the larval energetic reserves are available for larval swimming but metamorphosis was relatively inexpensive in this species and larval reserves can be used for post-metamorphic growth. The carry-over effects previously observed in this species appear to be nutritionally mediated and even short (< 3 h) periods of larval swimming can significantly deplete larval energy reserves.
Resumo:
The biphasic life cycle, characterised by metamorphosis from a pelagic larva to a benthic adult, is found throughout the Metazoa. So is sexual reproduction via eggs and sperm. Amidst a tangled web of hypotheses on the origin of metazoan biphasy, current weight of opinion lies with a simple, larva-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This school of thought derives from Haeckel's interpretation of the gastrula as the recapitulation of a gastrean ancestor that evolved via selection on a simple, planktonic hollow ball-of-cells to develop the capacity to feed. We suggest that a paradigm shift is required to accomodate accumulating evidence of the genomic and developmental complexity of the metazoan last common ancestor, which was likely to have already possessed a biphasic lifecycle. Here we incorporate recent evidence from basal metazoans, in particular poriferans, to argue that a more parsimonious theory of the origin of biphasy is as a direct consequence of sexual reproduction in an ancestral benthic adult form. The metazoan embryo can itself be considered the precursor to a biphasic life cycle, wherein the embryo represents one phase and the adult another. Embryos in the water column are subject to natural selection for longeveity and dispersal, which sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. This alternate view considers the conserved use of regulatory genes in disparate metazoans as a reflection of both the complexity of the LCA and the antiquity of the biphasic life cycle. It does not require that extant embryogenesis, including gastrulation, recapitulates evolution.
Resumo:
As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
We have isolated a homeobox-containing cDNA from the gastropod mollusc Haliotis rufescens that is most similar to members of the Mox homeobox gene class, The derived Haliotis homeodomain sequence is 85% identical to mouse and frog Mox-2 homeodomains and 88.9% identical to the partial cnidarian cnox5-Hm homeodomain. Quantitative reverse transcription-polymerase chain reaction analysis of mRNA accumulation reveals that this gene, called HruMox, is expressed in the larva, but not in the early embryo, Transcripts are most prevalent during larval morphogenesis from trochophore to veliger. There are also transient increases in transcript prevalence 1 and 3 days after the intitiation of metamorphosis from veliger to juvenile. The identification of a molluscan Mox homeobox gene that is more closely related to vertebrate genes than other protostome (e.g. Drosophila) genes suggests the Mox class of homeobox genes may consist of several different families that have been conserved through evolution, (C) 1997 Federation of European Biochemical Societies.
Resumo:
N-Acylisoxazol-5-ones lose carbon dioxide under photochemical and thermal conditions affording iminocarbenes which undergo intramolecular cyclisation through the oxygen of the acyl group to give oxazoles. Under photochemical conditions those acylisoxazolones with electron withdrawing groups at C-4 usually give high yields of oxazoles, while those with electron donating groups at C-4 give only poor yields: the reverse is observed under thermal conditions.
Resumo:
Objective The purpose of this study was to evaluate the efficacy of a centrifuged osteogenic bone marrow aspirate to stimulate healing in rabbit fibular osteotomies Methods Ten white New Zealand rabbits were used A transverse medial diaphyseal fibular osteotomy was performed on the right fibula where an absorbable collagen sponge embedded in osteogenic centrifuged bone marrow aspirate obtained from the ipsilateral iliac bone was inserted The left fibula was used as the control group where the collagen absorbable sponge was inserted without the osteogenic centrifuged aspirate The rabbits were sacrificed four weeks after surgery to evaluate bone callus formation Analyses of results were performed with DEXA bone densitometry to evaluate callus mineral mass multislice computed tomography to evaluate callus volume and histomorphometry to evaluate the relative rate of tissue formation Results The employment of centrifuged osteogenic bone marrow aspirate resulted in a 40 3% increase of callus bone mineral mass and increased relative quantity of bone tissue formation by 9 4% without a significant increase in the relative quantities of cartilage fibrous tissue or in callus volume Conclusions This study shows that the centrifuged osteogenic bone marrow aspirate was able to improve the healing of experimental fibular osteotomies in rabbits